
High-Performance 8-Bit Microcontrollers

Z8 Encore! XP® F6482
Series API

Programmer’s Reference Manual

RM006404-0215
Copyright © 2015 Zilog®, Inc. All rights reserved.
www.zilog.com

http://www.zilog.com
http://www.zilog.com

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual
DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY
ZILOG’S PRODUCTS ARE NOT AUTH ORIZED FOR USE AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF ZILOG CORPORATION.

As used herein
Life support devices or systems are devices which (a) are intended for surgical implant
into the body, or (b) support or sustain life and whose failure to perform when properly
used in accordance with instructions for use provided in the labeling can be reasonably
expected to result in a si gnificant injury to the user. A critical component is any
component in a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life suppor t device or system or to af fect its safety or
effectiveness.

Document Disclaimer
©2015 Zilog, Inc. All rights reserved. Information in this publication concerning the
devices, applications, or technology described is intended to suggest possible uses and
may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR
PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION,
DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
D O E S N O T A S S U M E LI A B I L I T Y F O R I N T E L L E C T U A L PRO P E RT Y
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION,
DEVICES, OR TECHNOLOGY DESCRIBE D HEREIN OR OTHERWISE. The
information contained within this document has been verified according to the general
principles of electrical and mechanical engineering.
Z8 Encore! and Z8 Encore! XP are trademarks of Zilog, Inc. All other product or service
names are the property of their respective owners.

Warning:
RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

iii
Revision History
Each instance in this document’s revision history reflects a change from
its previous version. For more details, refer to the corresponding pages
linked in the table below.

Date
Revision
Level Description

Page
No.

Feb
2015

04 Updated description for BSP_USB_EPABORT,
BSP_USB_EPTRANSMIT; added content for fpUserEnum
and Correct Usage in the BSP_USB section.

128,
134,
214

Dec
2014

03 Updated language for the Off_Thresh flag in the
UART_RX_DMA data structure for clarity.

209

Apr
2014

02 Corrected CLKS Data Structure in the BSP API section. 148

Oct
2013

01 Original issue. All
RM006404-0215 Revision History

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

iv
Table of Contents

Revision History . iii

The F6482 Series Board Support Package .1
Sample Programs .2

Advanced Encryption Standard Accelerator .4
BSP_AES_Init .5
BSP_AES_Stop .7
BSP_AES_Transform .8

Clock System API Reference .11
CLKS Functions in the BSP API .11
BSP_CLKS_Config .12

Digital to Analog Converter .14
BSP_DAC_Init .15
BSP_DAC_Stop .17
BSP_DAC_Abort .18
BSP_DAC_OutputOneByteSignedValue .19
BSP_DAC_OutputOneByteUnsignedValue 21
BSP_DAC_OutputTwoByteSignedValue .23
BSP_DAC_OutputTwoByteUnsignedValue25
BSP_DAC_OutputBuffer .27

Direct Memory Access API Reference .30
DMA Functions in the BSP API .30
BSP_DMA_Init .31
BSP_DMA_Acquire .32
BSP_DMA_Release .35
BSP_DMA_Setup .36
RM006404-0215 Table of Contents

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

v

BSP_DMA_SetupLL . 39
BSP_DMA_Start . 41
BSP_DMA_Abort . 42
BSP_DMA_GetCount . 43
BSP_DMA_GetCountLL . 44

Event System API Reference . 46
Event System Functions in the BSP API . 46
BSP_Event_Acquire . 47
BSP_Event_Release . 49
BSP_Event_Connect . 51
BSP_Event_Disconnect . 53

General Purpose Input/Output API Reference . 55
GPIO Functions in the BSP API . 55
BSP_GPIO_AltFunc . 56
BSP_GPIO_DD_In . 59
BSP_GPIO_DD_Out . 60
BSP_GPIO_Set . 61
BSP_GPIO_Clear . 62
BSP_GPIO_Toggle . 63

Inter-Integrated Circuit API . 64
I2C Functions in the BSP API . 64
BSP_I2C_Init . 66
BSP_I2C_Stop . 67
I2C_Setup Functions . 68
I2C Transfer and Receive Functions . 69
I2C_Set_Slave_Buffer(); . 71
I2C_Brg . 72
BSP_I2C_General_Call_Address . 73

Interrupt Controller API Reference . 74
IRQ Macros in the BSP API . 74
Table of Contents RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

vi
BSP_IRQxEN_DBLD .75
BSP_IRQxEN_LO .77
BSP_IRQxEN_NOM .78
BSP_IRQxEN_HI .80
BSP_IRQx_CLR .82
BSP_IRQ_ES_FALLING .84
BSP_IRQ_ES_RISING .85
BSP_IRQ_SS0_FIRST .86
BSP_IRQ_SS0_SECOND .88
BSP_IRQ_SS1_FIRST .90
BSP_IRQ_SS1_SECOND .91
BSP_IRQ_DISABLE .92
BSP_IRQ_RESTORE .93

Serial Peripheral Interface API Reference. .94
SPI Functions in the BSP API .94
BSP_SPI_Init .95
BSP_SPI_Xfer .97
BSP_SPI_Receive .101
BSP_SPI_Transmit .102
BSP_SPI_Stop .103

Timer API Reference. .104
TMR Macros in the BSP API .104
BSP_TMR_READ .105
BSP_TMR_START .106
BSP_TMR_STOP .107

Universal Asynchronous Receiver Transmitter API Reference 108
UART Functions in the BSP API .108
BSP_UART_Init .109
BSP_UART_Transmit .111
BSP_UART_Receive .114
BSP_UART_Stop .116
RM006404-0215 Table of Contents

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

vii
BSP_MP_Transmit . 117
BSP_DMX_Transmit . 119

Universal Serial Bus API Reference . 121
USB Functions in the BSP API . 121
Endpoint Functions in the BSP USB API 121
BSP_USB_Init . 122
BSP_USB_PollEvents . 124
BSP_USB_Resume . 125
BSP_USB_Stop . 127
BSP_USB_EpAbort . 128
BSP_USB_EpInit . 129
BSP_USB_EpStop . 132
BSP_USB_EpReceive . 137

Appendix A. Data Structures . 140
AES Structures and Unions in the BSP API 141
CLKS Data Structure in the BSP API . 148
DAC Structures and Unions in the BSP API. 152
DMA Data Structures in the BSP API. 162
GPIO Data Structures in the BSP API. 165
I2C Structures and Unions in the BSP API 168
BSP_I2C . 169
I2C_CFG . 170
I2C_COMMON_CFG . 171
I2C_MASTER_POLLING . 172
I2C_MASTER_IRQ . 173
I2C_MASTER_DMA . 174
I2C_SLAVE_POLLING . 175
I2C_SLAVE_IRQ . 176
I2C_SLAVE_DMA . 177
I2C_Status . 178
I2C_State . 180
Table of Contents RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

viii
I2C Callback Functions in the BSP API .181
FP_I2C_DONE (fpXferDone) .182
SPI Data Structures in the BSP API .183
UART Data Structures in the BSP API. .190
USB Data Structures in the BSP API .211

Customer Support .244
RM006404-0215 Table of Contents

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

1

The F6482 Series Board Support
Package

This document serves as a reference to the F6482 Series Board Support
Package (BSP) API, which is a blend of macros and C functions that
facilitate application development with Zilog’s Z8F6482 Series of MCUs
by abstracting direct SFR manipulation from the programmer. Macros
provide near-assembly-level access to SFRs without incurring the over-
head (i.e., code size and execution time) of C functions for basic opera-
tions (e.g., masking a particular interrupt source, stopping a timer). More
complex operations are implemented in C functions (user-visible source
code), thereby eliminating the requirement for the customer to (re)write
code for frequently-used operations such as transmitting a block of data
through the UART.

The API of most BSP peripherals includes at least an init function (i.e.,
BSP_Xxx_Init, in which Xxx identifies the particular peripheral device
being initialized) that configures the underlying peripheral and establishes
the application developer’s intended use model of the device (e.g., data
transfer using polling or interrupts). Typically, the Init API requires a ref-
erence to a peripheral-specific data structure containing configuration
information used to initialize the peripheral’s special function registers.
Applications must call a peripheral’s init function before calling any of
the peripheral’s other BSP functions.

Many BSP peripherals include data transfer APIs. These peripherals can
be configured (via the peripheral’s Init API) to perform the data transfer
operation synchronously or asynchronously. Typically, this operation
involves selecting between a poll-mode (synchronous) setup function vs.
a DMA- or interrupt-driven (both asynchronous) setup function within the
peripheral’s configuration structure.
RM006404-0215 The F6482 Series Board Support Package

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

2

API function calls that perform synchronous transfers do not rerun control
to the caller until the operation specified by the API completes (or aborts).
API function calls that perform asynchronous transfers typically return
immediately while the actual data transfer completes in the background.
Peripherals that can be configured for asynchronous data transfer also
include an (optional) transfer complete callback function pointer that the
application can set to the address of a routine the BSP calls when the
transfer completes. With asynchronous data transfers, the application
should not modify the contents of the buffer used in the transfer until the
BSP calls the application’s transfer complete handler. If the initial call to
an asynchronous API fails and the transfer operation cannot be performed
the transfer complete callback is not called.

Applications that call the init API of any of the BSP peripherals are cau-
tioned against directly modifying any of that peripheral’s special function
registers; such modifying can cause the peripheral to operate unexpect-
edly (or not at all). If an application must modify the configuration of a
peripheral after the peripheral’s init API is called, the application should
call the peripheral’s stop API (i.e., BSP_Xxx_Stop, in which Xxx identi-
fies the target peripheral). The application can next modify the periph-
eral’s configuration structure, then call the peripheral’s init routine.
Similarly, when BSP services are no longer required for a given periph-
eral, applications can call the peripheral’s BSP_Xxx_Stop API to direct
the BSP to stop using the device.

Sample Programs
Included in Zilog Developer Studio II (ZDS II) for Z8 Encore! are sample
programs that demonstrate the APIs described in this document. Upon
accepting the default prompts during the ZDS II installation, these sam-
ples will be located in either of the following paths, depending on OS, as
follows:
The F6482 Series Board Support Package RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

3

On 64-Bit Windows Installations
C:\Program Files (x86)\Zilog\ZDSII_Z8Encore!_X.Y.Z\
BSP\Z8F6482\Samples

On 32-Bit Windows Installations
C:\Program Files\Zilog\ZDSII_Z8Encore!_X.Y.Z\BSP\
Z8F6482\Samples

In the above paths, X.Y.Z refers to the ZDS II version number.

ZDS II – Z8 Encore! is available for download from the Free Software
category of the Zilog Store.

Note:
RM006404-0215 Sample Programs

http://www.zilog.com/store

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

4

Advanced Encryption Standard
Accelerator

The AES API implements the following functions:

• BSP_AES_Init – see page 5

• BSP_AES_Stop – see page 7

• BSP_AES_Transform – see page 8
Advanced Encryption Standard Accelerator RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

5

BSP_AES_INIT

Prototype
BSP_STATUS BSP_AES_Init (BSP_AES * pAES)

Parameter

Return Value
BSP_ERR_SUCCESS if no errors occur.

BSP_ERR_IN_USE if the AES has already been initialized and
BSP_AES_Stop() was not subsequently called, or if a DMA channel is
requested which was previously initialized.

BSP_ERR_INVALID_PARAM for some invalid configurations of the
BSP_AES structure.

Description
This API can be used to configure the AES for encryption or decryption
before its first use, and can also be used to reconfigure the AES, which
can change any of the following operations:

• Encryption mode (ECB, OFB, CBC, or decrypt key derivation)

• From encryption to decryption, or vice versa

• Data transfer mode (polling, interrupt, or DMA)

• Encryption (or decryption) key

pAES A pointer to a BSP_AES structure that configures the AES
for encryption or decryption operations; see the AES
Structures and Unions in the BSP API section on page 141.
RM006404-0215 BSP_AES_Init

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

6

Correct Usage
This function should not be called if the AES has been previously initial-
ized, and should only be called after first calling BSP_AES_Stop(); oth-
erwise, an error status will be returned.
Advanced Encryption Standard Accelerator RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

7

BSP_AES_STOP

Prototype
BSP_STATUS BSP_AES_Stop (void)

Parameters
None.

Return Value
BSP_ERR_SUCCESS if no errors occur.

BSP_ERR_BUSY if called while an encryption, decryption, or key deriva-
tion operation is in progress.

BSP_ERR_INVALID_PARAM if the AES has not been initialized, or if
BSP_AES_Stop() has already been called since the previous initializa-
tion.

Description
This API can be used to shut down the AES gracefully when it is no lon-
ger required, and can also be used to undo a previous initialization prior to
reconfiguring the AES.

Correct Usage
This function should not be called if an encryption, decryption, or decrypt
key derivation is in progress. This function should not be called if the
AES is not currently in an initialized state; in either case, an error status
will be returned.
RM006404-0215 BSP_AES_Stop

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

8

BSP_AES_TRANSFORM

Prototype
BSP_STATUS BSP_AES_Transform (HANDLE hInput,
HANDLE hOutput,
HANDLE iv,
BSP_SIZE nBlocks)

Parameters

Return Value
BSP_ERR_SUCCESS if no errors occur.

BSP_ERR_BUSY if a transform operation is already in progress.

Description
Performs any of the three supported data transforms provided by the AES:
encryption, decryption, or the derivation of a decrypt key.

hInput A pointer to the buffer of input data to be encrypted or
decrypted.

hOutput A pointer to a buffer, in which the transformed data (the
encrypted or decrypted text, or the decrypt key) may be
stored.

iv A pointer to the initialization vector, if using those
encryption modes (OFB, CBC) which require one. For
other modes (ECB or decrypt key derivation) set this to
NULLPTR.

nBlocks The number of 16-byte blocks of input data to be
transformed.
Advanced Encryption Standard Accelerator RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

9

Correct Usage
The data to be encrypted or decrypted must be an exact number of 16-byte
blocks. This statement will always be true of a message that has already
been encrypted using AES, but if you have a plain text message to
encrypt, you must pad it if necessary to an integral number of blocks
before calling BSP_AES_Transform(). Several padding schemes are in
widespread use.

To decrypt messages encrypted with either the ECB or CBC encryption
mode, a decrypt key must first be derived (using the encryption key and
any input message) and stored. This task is not necessary for decrypting
messages encrypted with OFB Encryption Mode; this requirement is is a
feature of the AES standard itself.

When deriving a decrypt key, you must use polling or interrupt data trans-
fers, and DMA transfers will hang; this requirement is a feature of the
Z8F6482 MCU’s AES accelerator hardware.

When using OFB Decryption Mode, the operation (i.e., the Decrypt
member of the BSP_AES structure) must be set to AES_ENCRYPT for both
encrypting and decrypting messages; it is a feature of OFB Encryption
Mode.

To decrypt a message encrypted with CBC Encryption Mode, you must
use the ECB decryption mode (after having first derived and stored the
decrypt key); this requirement is a feature of the Z8F6482 MCU’s AES
accelerator hardware.

To recover the plain text of a message encrypted with CBC Encryption
Mode, a further software transform must be applied to the output data
from the Z8F6482 MCU’s AES accelerator; this requirement is a feature
of the Z8F6482 MCU’s AES accelerator hardware. An example of such
software is included in some of the AES example programs.

This function should not be called while a previous transform initiated by
BSP_AES_Transform() is still in progress. This issue can occur even
after BSP_AES_Transform() has returned, if interrupts or DMA are
RM006404-0215 BSP_AES_Transform

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

10
being used for the data transfers. In such cases, your callback function can
alert your application that the transform is complete. If a transform is still
in progress, BSP_AES_Transform() will return an error status.
Advanced Encryption Standard Accelerator RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

11
Clock System API Reference

The BSP Clock System (CLKS) driver is used to simplify the process of
programming the individual clock system special function registers.
Applications can use the BSP-supplied default clock configuration or a
custom configuration defined by the application. The BSP CLKS driver
next performs the individual programming tasks necessary to enable the
specified configuration.

CLKS Functions in the BSP API
The CLKS API implements the following function:

BSP_CLKS_Config – see page 12
RM006404-0215 Clock System API Reference

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

12
BSP_CLKS_CONFIG

Prototype
void BSP_CLKS_Config(BSP_CLKS * pClks);

Parameters

Return Value
None.

Description
Typically, the first BSP function that application programs call is the
BSP_CLKS_Config API. This routine initializes the clock system using
the register values referenced by the pClks parameter. After the clock
system has been initialized, other BSP peripheral drivers can be initial-
ized using a known set of clock frequencies and sources.

This function disables interrupts and switches the system clock source to
the watchdog timer oscillator while the clocks system special function
registers are reprogrammed. After the entire clock system has been recon-
figured the system clock source is switched to the clock source specified
in the BSP_CLKS structure and interrupts are reenabled. When this func-
tion returns control to the caller, the new clock configuration is active.
However, if the FLL frequency is modified as a result of calling this API,
then the FLL may not yet have attained final lock by the time this API
returns control. In essence, this API returns control after the FLLRDY bit
has been set, which typically occurs before the FLLDONE bit is also set.
If the application intends to enter Stop Mode immediately after calling the
BSP_CLKS_Config API to modify the FLL frequency, then the applica-

pClks References a variable of type BSP_CLKS that specifies the
special function register values to be used during
initialization of the clock system.
Clock System API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

13
tion should poll for the FLLDONE bit, as shown in the code fragment
below. If the application does not wait for FLLDONE before entering
Stop Mode, then the MCU may fail to operate as expected.

BSP_CLKS_Config(&BSP_Default_CLKS_Cfg);
/*
* Wait for FLLDONE before entering Stop Mode after
* calling the BSP_CLKS_Config to modify the FLL
* frequency.
*/
while(!(DCOCTL & CLKS_FLLDONE));
asm("STOP");

Correct Usage
The BSP_CLKS_Config routine does not perform any error checking or
validation of the clock system SFR values supplied through the pClks
parameter. If the pClks pointer references a BSP_CLKS structure contain-
ing invalid or inconsistent values, then the system could fail to operate as
expected; or will not operate at all.

The BSP library includes a default clock system configuration (as defined
by the BSP_Default_CLKS_Cfg global variable) that may be used by
applications targeting the Z8F6482 Series Development Kit. The BSP
default clock configuration is enabled by making the following function
call:

BSP_CLKS_Config(&BSP_Default_CLKS_Cfg);

Alternatively, applications can initialize a local variable of type
BSP_CLKS with values appropriate for the target hardware platform and
then pass the address of the local variable to the BSP_CLKS_Config rou-
tine.
RM006404-0215 BSP_CLKS_Config

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

14
Digital to Analog Converter

The DAC API implements the following functions:

• BSP_DAC_Init – see page 15

• BSP_DAC_Stop – see page 17

• BSP_DAC_Abort – see page 18

• BSP_DAC_OutputOneByteSignedValue – see page 19

• BSP_DAC_OutputOneByteUnsignedValue – see page 21

• BSP_DAC_OutputTwoByteSignedValue – see page 23

• BSP_DAC_OutputTwoByteUnsignedValue – see page 25

• BSP_DAC_OutputBuffer – see page 27
Digital to Analog Converter RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

15
BSP_DAC_INIT

Prototype
BSP_STATUS BSP_DAC_Init (BSP_DAC * pDac)

Parameter

Return Value
BSP_ERR_SUCCESS if no errors occur.

BSP_ERR_IN_USE if the DAC has already been initialized and
BSP_DAC_Stop() was not subsequently called, or if the DAC has
already been enabled in the PWRCTL1 Register, or if a DMA channel
which was previously initialized is requested.

BSP_ERR_INVALID_PARAM if DMA data transfer is requested but no
DMA channel is specified.

Description
This API can be used to enable and configure the DAC, before its first
use, and can also be used to reconfigure the DAC, which can change any
of the following issues:

• The power level at which to operate the DAC

• The DAC voltage reference

• Whether data are to be treated as signed or unsigned

• Whether to drive DAC conversions directly or via the Event System

• Whether data are to be treated as 8, 12, or 16 bits

pDac A pointer to a BSP_DAC structure that configures the DAC
for conversion operations; see the DAC Structures and
Unions in the BSP API section on page 152.
RM006404-0215 BSP_DAC_Init

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

16
Correct Usage
Some of the possible DAC voltage reference selections require external
hardware, or impose requirements on the power supply voltage, or inter-
act with settings of the Analog to Digital Converter (ADC). The BSP soft-
ware does not check for any of these conditions. It is your responsibility
to ensure that the software configuration used in BSP_DAC_Init() is
consistent with your hardware setup.

This function should not be called if the DAC has been previously initial-
ized, and should only be called after first calling BSP_DAC_Stop(); oth-
erwise, an error status will be returned.

It is not necessary to call this function again and reinitialize the DAC, if
an operation (such as output of an endlessly looping buffer) was termi-
nated by calling BSP_DAC_Abort(), and you now want to output more
data using the same hardware configuration.

After calling this function, it is your responsibility to ensure that the data
to be converted are either one-byte or two-byte values, in agreement with
the parameter used to initialize the DAC.

This function automatically sets up the GPIO system to drive DAC output
on pin PC3.

An initial output value must be specified. The DAC output will be driven
at this level from the time when this function finishes execution, enabling
the DAC, until the user first requests a conversion.
Digital to Analog Converter RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

17
BSP_DAC_STOP

Prototype
BSP_STATUS BSP_DAC_Stop (void)

Parameters
n/a

Return Value
BSP_ERR_SUCCESS if no errors occur.

BSP_ERR_BUSY if called while a DAC conversion is in progress.

BSP_ERR_FAILURE if the DAC has not been initialized, or if
BSP_DAC_Stop() has already been called since the previous initializa-
tion.

Description
This API can be used to shut down the DAC gracefully when it is no lon-
ger required, and can also be used to disable the DAC (thereby reducing
power consumption) and to undo a previous initialization prior to recon-
figuring the DAC.

Correct Usage
This function should not be called if a DAC conversion is in progress.
This function should not be called if the DAC is not currently in an initial-
ized state; in either case, an error status will be returned. If you must ter-
minate an ongoing DAC operation, such as output of an endlessly looping
buffer, call BSP_DAC_Abort() instead.
RM006404-0215 BSP_DAC_Stop

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

18
BSP_DAC_ABORT

Prototype
void BSP_DAC_Abort (void)

Parameters
n/a

Return Value
n/a

Description
This API can be used to terminate any in-progress DAC conversion. Its
primary intended use is to terminate the output of an endlessly looping
buffer. Data transfers to the DAC are terminated, but the DAC is not dis-
abled and the DAC software and hardware remain configured as they
were in the ongoing conversion (if any). As a result, a new conversion can
immediately begin using the same configuration, if desired. The DAC
will be left outputting the last value that it converted before this function
was called.

Correct Usage
If you wish to disable or reconfigure the DAC, you should call
BSP_DAC_Stop() after this function call returns. The DAC remains
enabled when BSP_DAC_Abort() returns, and may continue to consume
some power.
Digital to Analog Converter RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

19
BSP_DAC_OUTPUTONEBYTESIGNEDVALUE

Prototype
BSP_STATUS BSP_DAC_OutputOneByteSignedValue (INT8
value)

Parameter

Return Value
BSP_ERR_SUCCESS if no errors occur.

BSP_ERR_BUSY if the DAC is already busy converting a buffer of data.

Description
This API can be used for direct and immediate output on the DAC of a
signed, 8-bit value.

This function is identical to BSP_DAC_OutputOneByteUnsignedValue()
except for the type of its parameter.

Correct Usage
When making one call or a sequence of calls to this function, you are
essentially operating the DAC as an 8-bit DAC with only 256 discrete
output levels rail-to-rail. It is your responsibility to determine that the
DAC hardware was configured consistently with this operational mode in
your call to BSP_DAC_Init().

When calling this function, the DAC will immediately terminate any pre-
vious output of a single value that might be in progress due to a previous
call to this function. It will hold the output value indefinitely, until a sub-
sequent call to this function or to BSP_DAC_Stop(). Controlling the

value An 8-bit, signed integer value which is to be driven on the
DAC output pin.
RM006404-0215 BSP_DAC_OutputOneByteSignedValue

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

20
setup and hold time for the DAC conversion is the responsibility of your
application code.

If you call this function while a buffer of data is still being output follow-
ing a previous call to BSP_DAC_OutputBuffer(), an error will be
returned.
Digital to Analog Converter RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

21
BSP_DAC_OUTPUTONEBYTEUNSIGNEDVALUE

Prototype
BSP_STATUS BSP_DAC_OutputOneByteUnsignedValue (UINT8
value)

Parameter

Return Value
BSP_ERR_SUCCESS if no errors occur.

BSP_ERR_BUSY if the DAC is already busy converting a buffer of data.

Description
This API can be used for direct and immediate output on the DAC of an
unsigned, 8-bit value.

This function is identical to BSP_DAC_OutputOneByteSignedValue()
except for the type of its parameter.

Correct Usage
When making one call or a sequence of calls to this function, you are
essentially operating the DAC as an 8-bit DAC with only 256 discrete
output levels rail-to-rail. It is your responsibility to determine that the
DAC hardware was configured consistently with this operational mode in
your call to BSP_DAC_Init().

When calling this function, the DAC will immediately terminate any pre-
vious output of a single value that might be in progress due to a previous
call to this function. It will hold the output value indefinitely, until a sub-
sequent call to this function or to BSP_DAC_Stop(). Controlling the

value An 8-bit, unsigned integer value which is to be driven on
the DAC output pin.
RM006404-0215 BSP_DAC_OutputOneByteUnsignedValue

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

22
setup and hold time for the DAC conversion is the responsibility of your
application code.

If you call this function while a buffer of data is still being output follow-
ing a previous call to BSP_DAC_OutputBuffer(), an error will be
returned.
Digital to Analog Converter RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

23
BSP_DAC_OUTPUTTWOBYTESIGNEDVALUE

Prototype
BSP_STATUS BSP_DAC_OutputTwoByteSignedValue (INT16 value)

Parameter

Return Value
BSP_ERR_SUCCESS if no errors occur.

BSP_ERR_BUSY if the DAC is already busy converting a buffer of data.

Description
This API can be used for direct and immediate output on the DAC of a
signed, 2-byte value.

This function is conceptually similar to
BSP_DAC_OutputOneByteSignedValue() except for the type of its
parameter, but the code that performs this function is somewhat larger and
more complex.

This function is conceptually similar to
BSP_DAC_OutputTwoByteUnsignedValue() except for the type of
its parameter, but the code that performs this function is somewhat differ-
ent; the size and complexity are similar.

Correct Usage
When making one call or a sequence of calls to this function, you are
operating the DAC at its full resolution as a 12-bit DAC with 4096 dis-
crete output levels rail-to-rail. The restriction to only 12 usable bits from

value A 16-bit, signed integer value which is to be driven on the
DAC output pin.
RM006404-0215 BSP_DAC_OutputTwoByteSignedValue

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

24
an input value that is formally 16 bits may be achieved in one of two
ways. You may opt to provide input data with a full 16-bit range and
allow the DAC to use only the most significant 12 bits; in this case, you
must specify left justification of the DAC data registers in the BSP_DAC
structure that you pass to BSP_DAC_Init(). Alternatively, you may pro-
vide input data that are already restricted to a 12-bit range; in that case,
you must specify right justification. In either case, it is your responsibility
to determine that the DAC hardware was configured consistently with the
range of your input data, in your call to BSP_DAC_Init().

When calling this function, the DAC will immediately terminate any pre-
vious output of a single value that might be in progress due to a previous
call to this function. It will hold the output value indefinitely, until a sub-
sequent call to this function or to BSP_DAC_Stop(). Controlling the
setup and hold time for the DAC conversion is the responsibility of your
application code.

If you call this function while a buffer of data is still being output follow-
ing a previous call to BSP_DAC_OutputBuffer(), an error will be
returned.
Digital to Analog Converter RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

25
BSP_DAC_OUTPUTTWOBYTEUNSIGNEDVALUE

Prototype
BSP_STATUS BSP_DAC_OutputTwoByteUnsignedValue (UINT16 value)

Parameter

Return Value
BSP_ERR_SUCCESS if no errors occur.

BSP_ERR_BUSY if the DAC is already busy converting a buffer of data.

Description
This API can be used for direct and immediate output on the DAC of an
unsigned, 2-byte value.

This function is conceptually similar to
BSP_DAC_OutputOneByteUnsignedValue() except for the type of its
parameter, but the code that performs this function is somewhat larger and
more complex.

This function is conceptually similar to
BSP_DAC_OutputTwoByteSignedValue() except for the type of its
parameter, but the code that performs this function is somewhat different;
the size and complexity are similar.

Correct Usage
When making one call or a sequence of calls to this function, you are
operating the DAC at its full resolution as a 12-bit DAC with 4096 dis-
crete output levels rail-to-rail. The restriction to only 12 usable bits from

value A 16-bit, unsigned integer value which is to be driven on
the DAC output pin.
RM006404-0215 BSP_DAC_OutputTwoByteUnsignedValue

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

26
an input value that is formally 16 bits may be achieved in one of two
ways. You may opt to provide input data with a full 16-bit range and
allow the DAC to use only the most significant 12 bits; in this case, you
must specify left justification of the DAC data registers in the BSP_DAC
structure that you pass to BSP_DAC_Init(). Alternatively, you may pro-
vide input data that are already restricted to a 12-bit range; in that case,
you must specify right justification. In either case, it is your responsibility
to determine that the DAC hardware was configured consistently with the
range of your input data, in your call to BSP_DAC_Init().

When calling this function, the DAC will immediately terminate any pre-
vious output of a single value that might be in progress due to a previous
call to this function. It will hold the output value indefinitely, until a sub-
sequent call to this function or to BSP_DAC_Stop(). Controlling the
setup and hold time for the DAC conversion is the responsibility of your
application code.

If you call this function while a buffer of data is still being output follow-
ing a previous call to BSP_DAC_OutputBuffer(), an error will be
returned.
Digital to Analog Converter RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

27
BSP_DAC_OUTPUTBUFFER

Prototype
BSP_STATUS BSP_DAC_OutputBuffer (HANDLE hInput,

BSP_SIZE Len,
BSP_SIZE nRepeats)

Parameters

Return Value
BSP_ERR_SUCCESS if no errors occur.

BSP_ERR_BUSY if the DAC is already busy converting a buffer of data.

Description
Drives the output of the data buffer to the DAC output pin. The size and
signedness of input data values must be consistent with the setup of the
DAC hardware given by the structure passed to BSP_DAC_Init(). The
buffer may be output a single time, multiple times, or indefinitely. The
timing of the conversions is driven by the Event System, which must be
set up and enabled separately. Data transfer will begin on the next Event
System event after this function call.

hInput A pointer to the buffer of input data to be driven on the
DAC output.

Len The size of the input buffer, in bytes (which may be the
same as the number of values in the buffer, or may be twice
that number, depending on whether an individual input
value is one byte or two).

nRepeats The number of times that the output of the entire buffer is
to be repeated. If nRepeats is set to 0, the buffer will be
output indefinitely until BSP_DAC_Abort() is called.
RM006404-0215 BSP_DAC_OutputBuffer

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

28
Correct Usage
This function call will not do anything until the application code has sep-
arately set up and enabled the Event System with a source (such as a
timer) connected to a particular Event System channel, with the DAC
connected as a destination to that same channel. Each time the Event Sys-
tem source fires (for example, on every rising edge of a timer output sig-
nal), the DAC will both begin conversion of the existing value in the
DAC data registers, and request loading of the next value from the ISR or
DMA.

Additionally, the DAC must have been previously configured for Event
System operation and for either interrupt or DMA-driven data transfers in
the call to BSP_DAC_Init().

A most important note about use of this function is that if individual data
values are two bytes and the DMA (rather than interrupts) is used for data
transfer, the data values in the buffer must be byte-swapped (i.e., their
endianness must be reversed) before calling this function. In essence, to
drive the 0x06B3 value as a 12-bit unsigned value, the value stored in the
buffer must be 0xB306. This particular issue is a consequence of the
Z8F6482 MCU’s DAC design, in which the DAC DMA request is deas-
serted upon writing the high, not the low, byte to the DAC data registers;
that design decision in turn was chosen to support the 8-bit output mode
for the DAC. The BSP software arranges for the byte-swapped input data
to be placed correctly in the DAC data registers by the DMA.

A fine point of the operation of BSP_DAC_OutputBuffer() concerns
the action of the stopInstantly member of the BSP_DAC structure that
was used in BSP_DAC_Init(). You may want to set this value true if you
want to transition as quickly as possible from output of one buffer to
another, for example if streaming data to the DAC from an external
device. (You may also want to insert a dummy value as the final element
of the input buffer in such an application.) In most other cases, you will
probably want to set stopInstantly to false. To learn more, see the
Digital to Analog Converter RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

29
description of stopInstantly in the the DAC Structures and Unions in
the BSP API section on page 152.

This function should not be called while a previous buffer output initiated
by BSP_DAC_OutputBuffer() is still in progress. This issue can occur
even after BSP_DAC_OutputBuffer() has returned, because interrupts
or DMA are used for the data transfers to the DAC in a nonblocking
mode. Your callback function can alert your application that the buffer
output is complete. If output is still in progress,
BSP_DAC_OutputBuffer() will return an error status.
RM006404-0215 BSP_DAC_OutputBuffer

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

30
Direct Memory Access API
Reference

The BSP DMA driver allows applications to perform DMA transfers with
very little programming. The BSP library can be configured to enable
support for up to BSP_DMA_NUM_CH (currently defined as 4) channels and
supports both direct transfers and linked list operation.

DMA Functions in the BSP API
The DMA API implements the following functions:

• BSP_DMA_Init – see page 31

• BSP_DMA_Acquire – see page 32

• BSP_DMA_Release – see page 35

• BSP_DMA_Setup – see page 36

• BSP_DMA_SetupLL – see page 39

• BSP_DMA_Start – see page 41

• BSP_DMA_Abort – see page 42

• BSP_DMA_GetCount – see page 43

• BSP_DMA_GetCountLL – see page 44
Direct Memory Access API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

31
BSP_DMA_INIT

Prototype
void BSP_DMA_Init(void);

#define BSP_DMA_Init() \
 (DMACTL = DMA_ROUND_ROBIN | DMA_BURST_4 |
DMA_AUTOINC)

Parameters
None.

Return Value
None.

Description
The BSP_DMA_init API is a macro that initializes the DMA global con-
trol register (DMACTL) for use by other DMA routines within the BSP.
Applications should call the BSP_DMA_Init API before calling other
BSP DMA functions or using other BSP drivers that are configured to use
a DMA channel(s).

Correct Usage
Applications can modify the definition of the BSP_DMA_Init macro or
programmatically initialize the DMACTL Register to use a custom con-
figuration. The setting of the PRIORITY and BURST fields within the
DMACTL Register may be set as appropriate for the application; but the
AUOTINC field should be set to 1 and all other fields set to 0 to ensure
BSP DMA routines function as described in this document.
RM006404-0215 BSP_DMA_Init

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

32
BSP_DMA_ACQUIRE

Prototype
BSP_STATUS BSP_DMA_Acquire
(
 UINT16 Base,
 FP_DMA_CB fpDone
);

Parameters

Return Value
BSP_ERR_SUCCESS is returned if no errors occur.

BSP_IN_USE is returned if the specified DMA channel has already been
acquired from a previous call to this API.

BSP_ERR_INVALID_PARAM is returned (with the debug version of the
BSP library) if the Base parameter exceeds BSP_DMA3. This error code is
also returned (with both the debug and release versions of the library) if
the fpDone parameter is NULLPTR, or if the specified DMA channel is
not available for allocation through the BSP.

Description
Applications call this API to request (exclusive) access to the DMA chan-
nel corresponding to the Base parameter. After a DMA channel has been

Base Specifies which DMA channel is being acquired. Base
must be in the range of BSP_DMA0 to BSP_DMA3.

fpDone Specifies the application callback routine that the DMA
driver calls when the DMA channel completes a transfer,
or when the remaining transfer count crosses the
watermark threshold. This parameter must not be NULLPTR
(0).
Direct Memory Access API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

33
acquired, it may not be reacquired until it is released (see the
BSP_DMA_Release API on page 35). This limitation ensures that BSP
peripheral drivers which use BSP DMA services and applications will not
be able to accidentally acquire a channel that is already in use by some
other entity in the system.

If this API returns BSP_ERR_SUCCESS the application may use the
requested DMA channel for data transfer (see the BSP_DMA_Setup API
on page 36 and the BSP_DMA_SetupLL API on page 39). After the data
transfer completes (or crosses a watermark threshold) the application’s
callback routine (referenced by the fpDone parameter) is called. The
function prototype of the callback routine is shown in the following code
snippet:

reentrant void DmaCallback
(
 UINT16 Base
);

The Base parameter indicates which DMA channel has completed its
transfer (or crossed the watermark threshold). The value of Base is
between BSP_DMA0 and BSP_DMA3.

Correct Usage
Several BSP peripheral drivers can optionally be configured to transfer
data using DMA. These BSP drivers will include routines to acquire, con-
figure, and start the DMA channel(s) allocated to them. In this instance
the only DMA API that the application must call is BSP_DMA_Init. If,
however, the application must perform a DMA transfer that does not
involve a BSP peripheral driver, then it is necessary for the application to
make explicit calls to the BSP_DMA_Acquire API and possibly other
APIs to initiate the actual transfer operation.

The BSP DMA driver uses an array of function pointers to indicate which
DMA channels are available for allocation through the
BSP_DMA_Acquire API. The array is defined in the DMA_Cfg.c file
RM006404-0215 BSP_DMA_Acquire

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

34
located in the ..\BSP\Cfg folder. By default, all available DMA chan-
nels are assigned to the BSP for allocation through this API as shown in
the following code snippet:

FP_DMA_SETUP fpBSP_Default_DmaSetup[BSP_DMA_NUM_CH] =
{
 DMA_Ch0_Init,
 DMA_Ch1_Init,
 DMA_Ch2_Init,
 DMA_Ch3_Init
};

Applications that must reserve one or more DMA channels for their pri-
vate use can modify the contents of the fpBSP_Default_DmaSetup
array, add the DMA_Cfg.c file to their project and rebuild the application.
To reserve channel 0 set the fpBSP_Default_DmaSetup[0] array
value to NULLPTR (0). Similarly, to reserve channel n, in which n is in
the range of 0 to BSP_NUM_Ch –1, set the
fpBSP_Default_DmaSetup[n] array value to NULLPTR (0).

If an entry in the fpBSP_Default_DmaSetuparray is NULLPTR and
the BSP_DMA_Acquire API is called to acquire that same DMA channel,
then the BSP_DMA_Acquire API will return
BSP_ERR_INVALID_PARAM, thereby preventing the BSP peripheral driv-
ers from using the DMA channel.
Direct Memory Access API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

35
BSP_DMA_RELEASE

Prototype
void BSP_DMA_Release(UINT16 Base);

Parameters

Return Value
BSP_ERR_SUCCESS is returned if no errors occur.

BSP_ERR_INVALID_PARAM is returned (with the debug version of the
BSP library) if the Base parameter exceeds BSP_DMA3.

Description
When an application is finished using a DMA channel it can be returned
to the BSP for subsequent reallocation through the BSP_DMA_Acquire
API.

Correct Usage
Most applications are not required to call this function. Applications typi-
cally acquire one or more DMA channels, then continue to use the DMA
channels during the lifetime of the application. In this instance, there is no
requirement for an application to call the BSP_DMA_Release API.

Base Specifies which DMA channel is being acquired. Base
must be in the range of BSP_DMA0 to BSP_DMA3.
RM006404-0215 BSP_DMA_Release

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

36
BSP_DMA_SETUP

Prototype
void BSP_DMA_Setup
(
 UINT16 Base,
 HANDLE hSrc,
 HANDLE hDst,
 UINT16 Count,
 UINT8 Ctl0,
 UINT8 Ctl1
);

#define BSP_DMA_Setup(DmaBase, Src, Dst, Cnt, Ctl0,
Ctl1) \
{ \
 DMA_SA((DmaBase)) = DMA_SA_SRCH; \
 DMA_SD((DmaBase)) = (UINT16)(Src) >> 8; \
 DMA_SD((DmaBase)) = (UINT8)(Src); \
 DMA_SD((DmaBase)) = (UINT16)(Dst) >> 8; \
 DMA_SD((DmaBase)) = (UINT8)(Dst); \
 DMA_SD((DmaBase)) = (Cnt) >> 8; \
 DMA_SD((DmaBase)) = (Cnt); \
 DMA_SD((DmaBase)) = (Ctl0); \
 DMA_SD((DmaBase)) = (Ctl1); \
}

Direct Memory Access API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

37
Parameters

Return Value
None.

Description
The BSP_DMA_Setup macro is used to configure the specified DMA
channel's special function registers for a pending DMA transfer. If the
ENABLE bit in the Ctl1 parameter is specified, then the transfer begins
when the DMA requestor specified in the Ctl1 parameter issues a DMA
request. If the ENABLE control bit is not specified application should use
the BSP_DMA_Start API to enable the DMA transfer.

Base Specifies which DMA channel is being configured for a
data transfer operation. Base must be in the range of
BSP_DMA0 to BSP_DMA3.

hSrc Address of the (RAM) memory buffer containing the data
to be transferred or the Special Function Register (SFR)
address of a peripheral device from which data is to be
extracted.

hDst Address of the (RAM) memory buffer into which data is
transferred or the Special Function Register (SFR) address
of a peripheral device to which data is to be transferred.

Count Specifies the number of bytes of data to be transferred.
Ctl0 Specifies the value to be written to the DMA channel's

DMAxCTL0 Special Function Register. To learn more
about the meaning of this value, refer to the Z8F6482
Series Product Specification.

Ctl1 Specifies the value to be written to the DMA channel's
DMAxCTL1 Special Function Register. To learn more
about the meaning of this value, refer to the Z8F6482
Series Product Specification.
RM006404-0215 BSP_DMA_Setup

http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

38
To learn more about the parameter values passed to this API, refer to the
Z8F6482 Series Product Specification.

Correct Usage
For proper operation of this macro the AUTOINC bit in the DMA global
control register (DMACTL) must be set to 1.
Direct Memory Access API Reference RM006404-0215

http://www.zilog.com/docs/ps0294.pdf

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

39
BSP_DMA_SETUPLL

Prototype
void BSP_DMA_SetupLL(UINT16 Base, DMA_DESC * pDescLL);

Parameters

Return Value
None.

Description
The BSP_DMA_SetupLL macro is used to configure the specified DMA
channel's special function registers for a pending DMA transfer using a
linked list of DMA descriptors.

After calling this macro the first descriptor referenced by the pDescLL
parameter will be transferred into the special function registers of the
DMA channel specified by the value of the Base parameter. Additionally
if the ENABLE bit is set in the Ctl1 member of the first DMA descriptor
the first stage of the DMA transfer will be enabled.

To learn more about DMA transfers using linked lists of descriptors, refer
to the Z8F6482 Series Product Specification.

Base Specifies which DMA channel is being configured for a
data transfer operation using a linked list of DMA
descriptors. Base must be in the range of BSP_DMA0 to
BSP_DMA3.

pDescLL Pointer to the first (or only) DMA descriptor in the chain of
descriptors. This pointer should reference an array of one
or more DMA_DESC data structures that specify each of the
individual operations within the overall transfer.
RM006404-0215 BSP_DMA_SetupLL

http://www.zilog.com/docs/ps0294.pdf

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

40
Correct Usage
For proper operation of this macro the AUTOINC bit in the DMA global
control register (DMACTL) must be set to 1. Also, the linked list of DMA
descriptors must be aligned in memory such that each descriptor's start
address is evenly divisible by 8.
Direct Memory Access API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

41
BSP_DMA_START

Prototype
void BSP_DMA_Start(UINT16 Base);

Parameters

Return Value
None.

Description
The BSP_DMA_Start API is used to set the ENABLE bit in the
DMAxCTL1 Special Function Register of the DMA channel that corre-
sponds to the Base parameter. As a result, the DMA transfer specified by
the current configuration of that channel’s DMA special function registers
will be enabled.

Correct Usage
When either the BSP_DMA_Setup or BSP_DMA_SetupLL routines are
used to configure the special function registers of a given DMA channel,
the DMA transfer can be immediately enabled by specifying the
DMA_ENABLE flag in the Ctl1 parameter/structure member. If the DMA
channel is not enabled at the time the DMA special function registers are
configured than this API may be used to enable the DMA transfer.

Base Specifies which DMA channel is being activated. Base
must be in the range of BSP_DMA0 to BSP_DMA3.
RM006404-0215 BSP_DMA_Start

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

42
BSP_DMA_ABORT

Prototype
void BSP_DMA_Abort(UINT16 Base);

Parameters

Return Value
None.

Description
The BSP_DMA_Abort API is used to terminate an enabled/in-progress
DMA transfer regardless of whether the transfer uses direct SFR address-
ing or linked list control. After the DMA transfer has been aborted, the
specified DMA channel con be reconfigured to initiate a new DMA trans-
fer without having to reacquire the channel (i.e., the DMA abort operation
does not implicitly release the DMA channel).

Correct Usage
None.

Base Specifies which DMA channel is being stopped. Base must
be in the range of BSP_DMA0 to BSP_DMA3.
Direct Memory Access API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

43
BSP_DMA_GETCOUNT

Prototype
BSP_SIZE BSP_DMA_GetCount(UINT16 Base);

Parameters

Return Value
A value between 0 and the transfer count specified in the call to
BSP_DMA_Setup (or the Cnt member of the active DMA descriptor)
indicating the number of bytes of data that have not yet been transferred.

Description
This function returns the number of bytes remaining in the current DMA
transfer operation. When using linked lists, the returned count does not
include the remaining transfer counts of inactive DMA descriptors.

If the DMA transfer has completed this function returns the value 0 indi-
cating there are no more bytes to be transferred.

Correct Usage
None.

Base Specifies the DMA channel for which the remaining
transfer count is sought. Base must be in the range of
BSP_DMA0 to BSP_DMA3.
RM006404-0215 BSP_DMA_GetCount

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

44
BSP_DMA_GETCOUNTLL

Prototype
BSP_SIZE BSP_DMA_GetCount
(
 UINT16 Base,
 DMA_DESC * pDescLL
);

Parameters

Return Value
A value between 0 and the sum of the transfer counts from all descriptors
within the linked list specified in the call to BSP_DMA_SetupLL indicat-
ing the number of bytes of data that have not yet been transferred.

Description
This function returns the number of bytes remaining in the current DMA
transfer operation that is composed of one or more descriptors in a linked
list descriptor chain. If the DMA transfer has completed this function
returns the value 0 indicating there are no more bytes to be transferred.

If the lined list of descriptors loops back to the first descriptor in the
chain, then the maximum transfer count only includes a single pass
through the list. For example if the linked list includes 3 descriptors, in
which the first indicates a transfer of 30 bytes; the second a transfer of 20

Base Specifies the DMA channel for which the remaining
transfer count is sought. Base must be in the range of
BSP_DMA0 to BSP_DMA3.

pDescLL Pointer to the first (or only) DMA descriptor in the chain of
descriptors. This pointer should reference an array of one
or more DMA_DESC data structures that specify each of the
individual operations within the overall transfer.
Direct Memory Access API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

45
bytes and the third specifies a transfer-in-list address that matches that of
the first descriptor, then the maximum transfer count of the chain is 50
bytes and this function will return a value between 0 and 50.

Correct Usage
None.
RM006404-0215 BSP_DMA_GetCountLL

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

46
Event System API Reference

The event system module is used to coordinate access to event system
channels. Most of the event system API is implemented using macros to
minimize code footprint and execution time.

Event System Functions in the BSP API
The Event System API implements the following functions and macros:

• BSP_Event_Acquire – see page 47

• BSP_Event_Release – see page 49

• BSP_Event_Connect – see page 51

• BSP_Event_Disconnect – see page 53
Event System API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

47
BSP_EVENT_ACQUIRE

Prototype
BSP_STATUS BSP_Event_Acquire(UINT8 Chan, UINT8 Src);

Parameters

Return Value
BSP_ERR_SUCCESS is returned if no errors occur.

BSP_IN_USE is returned if the event system channel corresponding to the
Chan parameter has already been acquired from a previous call to this
API.

Description
Applications call this API to request (exclusive) access to the event sys-
tem channel corresponding to the Chan parameter. After an event system
channel has been acquired, it may not be reacquired until it is released by
calling the BSP_Event_Release API.

If this API returns BSP_ERR_SUCCESS the application may connect the
requested channel to one or more destinations allowing the event system

Chan Specifies which event system channel is being acquired.
Chan must be in the range of ES_SSA_CH0 to
ES_SSA_CH7.

Src Identifies which peripheral or GPIO pin will trigger event
signals on the channel specified by the Chan parameter.
The ..\Inc\Z8F6482_Event_SFR.h source file
contains a set of macro definitions that identify each of the
possible Z8F6482 event system signal sources (i.e.,
ESCHxSRC). The value of the Src parameter should match
one of these macros (prefixed with ES_CHSRCSEL_).
RM006404-0215 BSP_Event_Acquire

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

48
signal source to trigger an action on each of the destinations to which it is
connected.

Correct Usage
This API does not enable or otherwise configure the event system source
identified by the Src parameter. It is the application’s responsibility to
configure and enable the peripheral device(s) and/or GPIO pin(s) that are
connected together by the event system.
Event System API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

49
BSP_EVENT_RELEASE

Prototype
#define BSP_Event_Release(Chan) \
{ \
 ESSSA = Chan; \
 ESSSD = ES_CHSRCSEL_DBLD; \
}

Parameters

Return Value
None.

Description
The BSP_Event_Release macro is used to return the specified event
system channel to the system for subsequent reallocation via the
BSP_Event_Acquire API.

Correct Usage
When an event system channel is released, the event system signal source
is disconnected from the channel but the destination peripheral(s) and/or
GPIO pin(s) remain connected to the inactive channel. To prevent the
event system from generated unwanted triggers when the channel being
released is reacquired, applications should disconnect all event system
destination device(s) from the channel being released.

This API does not disable or reconfigure any source or destination
device(s) or GPIO pin(s) connected to the channel being released. If

Chan Specifies which event system channel is being released.
Chan must be in the range of ES_SSA_CH0 to
ES_SSA_CH7.
RM006404-0215 BSP_Event_Release

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

50
appropriate, applications should disable source and destination device(s)
and/or reconfigure GPIO pin(s) associated with the event system channel
being released.
Event System API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

51
BSP_EVENT_CONNECT

Prototype
#define BSP_Event_Connect(Chan, Dst) \
{ \
 ESDSA = Dst; \
 ESDSD = (ES_DST_CON | Chan); \
}

Parameters

Return Value
None.

Description
This macro is used to connect the peripheral device or GPIO pin corre-
sponding to the Dst parameter to the event system channel specified by
the Chan parameter. Consequently, when the event system signal source
for that channel generates an event the destination corresponding to the
Dst parameter will be triggered (as will all other destinations connected

Chan Specifies the event system channel to which the destination
device (Dst) is being connected. Chan must be in the range
of ES_DST_CHSEL_0 to ES_DST_CHSEL_7.

Dst Identifies the peripheral device or GPIO pin to be added to
the set of event system destinations for the channel
corresponding to the Chan parameter. The
..\Inc\Z8F6482_Event_SFR.h source file contains a
set of macro definitions that identify each of the possible
Z8F6482 event system destinations (i.e., ESDSA). The
value of the Dst parameter should match one of these
macros (prefixed with ES_DSA_).
RM006404-0215 BSP_Event_Connect

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

52
to the same channel and all other destinations connected to the same
source on different channels).

Correct Usage
It is not possible to connect a destination peripheral or GPIO pin to more
than one channel at a time. If this macro is invoked multiple times, and
each invocation specifies a different channel, then the destination corre-
sponding to the Dst parameter will only be connected to the channel
specified on the last invocation of this macro.
Event System API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

53
BSP_EVENT_DISCONNECT

Prototype
#define BSP_Event_Disconnect(Dst) \
{ \
 ESDSA = Dst; \
 ESDSD = (0); \
}

Parameters

Return Value
None.

Description
This macro is used to disconnect the peripheral device or GPIO pin corre-
sponding to the Dst parameter to the event system channel specified by
the Chan parameter.

Correct Usage
It is not necessary for applications to invoke this macro before switching
an event system destination device or GPIO pin to a different channel (via
BSP_Event_Connect), because an event system destination may only
be connected to 1 channel at any given time. However it is strongly rec-

Dst Identifies the peripheral device or GPIO pin to be removed
from the set of event system destinations for the channel
corresponding to the Chan parameter. The
..\Inc\Z8F6482_Event_SFR.h source file contains a
set of macro definitions that identify each of the possible
Z8F6482 event system destinations (ESDSA). The value of
the Dst parameter should match one of these macros
(prefixed with ES_DSA_).
RM006404-0215 BSP_Event_Disconnect

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

54
ommended that all event system destination device(s) and/or GPIO pin(s)
be disconnected from an event system channel prior to connecting that
channel to a different event system signal source. Otherwise the destina-
tion device(s) and GPIO pin(s) could be inadvertently triggered by the
new event system signal source for that channel.
Event System API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

55
General Purpose Input/Output API
Reference

The GPIO module is used to simplify the process of configuring and
manipulating sets of GPIO port pins. Most of the GPIO API is imple-
mented using macros to minimize code footprint and execution time.

GPIO Functions in the BSP API
The GPIO API implements the following functions and macros:

• BSP_GPIO_AltFunc – see page 56

• BSP_GPIO_DD_In – see page 59

• BSP_GPIO_DD_Out – see page 60

• BSP_GPIO_Set – see page 61

• BSP_GPIO_Clear – see page 62

• BSP_GPIO_Toggle – see page 63
RM006404-0215 General Purpose Input/Output API

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

56
BSP_GPIO_ALTFUNC

Prototype
void BSP_GPIO_AltFunc(rom BSP_GPIO_CFG * pCfg);

Parameter

Return Value
None.

Description
This routine allows application programmers to configure multiple sets of
GPIO port pins in alternate function mode. Typically, GPIO port pins are
configured for one of four possible alternate function modes so that the
pin can be used by an integrated peripheral device such as the SPI or
UART controllers. Many port pins are multiplexed between different
peripherals and the particular alternate subfunction selected determines
which peripheral will use the pin(s).

Most BSP peripheral drivers accept a configuration parameter of type
rom BSP_GPIO_CFG *, which determines the set of GPIO pins and the
alternate function modes that will be used by the peripheral. In this
instance, the application is not required to explicitly call the
BSP_GPIO_AltFunc API; the application is only required to define

pCfg References an array of BSP_GPIO_CFG structures that
specifies one or more sets of GPIO port pins to be
configured for alternate function mode. The array must be
terminated with an entry in which the Port structure
member is 0. Additionally, the structure must be located in
Z8F6482 series read-only memory space (i.e., Flash). To
learn more, see the GPIO Data Structures in the BSP API
section on page 165.
General Purpose Input/Output API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

57
BSP_GPIO_CFG structure. In other instances (such as configuring a GPIO
port pin to be used as an event system output) the application must define
the BSP_GPIO_CFG structure and explicitly call the BSP_GPIO_AltFunc
API.

Correct Usage
Each entry in the array of BSP_GPIO_CFG structures referenced by the
pCfg parameter pertains to a set of one or more GPIO pins in the same
port; and each pin grouping must use the exact same AFS1 and AFS2
configuration. As an example consider the following fictitious definition:

rom BSP_GPIO_CFG GpioCfg[4] =
{
 {BSP_GPIO_PORT_C, (BIT1 | BIT0), 1, 0},
 {BSP_GPIO_PORT_C, (GPIOC_ESOUT0), 0, 1},
 {BSP_GPIO_PORT_D, (GPIOD_C0OUT), 0, 1},
 {0,0,0,0}
};

The sample GpioCfg array is configuring 3 sets of GPIO pins (the 4th
entry contains a GPIO port value of 0 indicating the end of the array). The
first 2 entries are configuring GPIO pins in port C for different alternate
subfunctions. PC1 and PC0 are being configured for AFS1=1 and
AFS2=0 but PC6 (GPIOC_ESOUT0) is being configured for subfunction
AFS=0 and AFS2=1. Although these pins are all in Port C, two entries in
the GpioCfg array are required, because the pin sets use different alter-
nate subfunction settings. GPIO pin PD7 (GPIOD_COUT) is also being
configured for AFS=0 and AFS2=1 (such as PC6), but because PD7 is in
a different port, a separate GpioCfg array entry is required.

The ..\Inc\Z8F8482_GPIO_SFR.h header file contains macro defini-
tions for various GPIO pins that may be used instead of bit values. For
example, the first entry in the GpioCfg array above used the macros
BIT1 (0x02) and BIT0 (0x01) but the definition could have used
GPIOC_ANA5_C0INN and GPIOC_ANA4_VBIAS_C0INP instead.
RM006404-0215 BSP_GPIO_AltFunc

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

58
To learn more about GPIO alternate functions, refer to the Z8F6482
Series Product Specification.
General Purpose Input/Output API Reference RM006404-0215

http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

59
BSP_GPIO_DD_IN

Prototype
void BSP_GPIO_DD_In(UINT16 Port, UINT8 BitMask);

#define BSP_GPIO_DD_In(Port, BitMask) \
{ \
 GPIO_PxADDR((Port)) = __DATA_DIRECTION; \
 GPIO_PxCTL((Port)) |= (BitMask); \
}

Parameters

Return Value
None.

Description
The BSP_GPIO_DD_In macro is used to configure the specified GPIO
port pin(s) as inputs.

Correct Usage
None.

Port Specifies the GPIO port whose pin(s) are being configured
as inputs. The value of the Port parameter must be
between BSP_GPIO_PORT_A to BSP_GPIO_PORT_J
(excluding BSP_GPIO_PORT_I which is not defined for
the Z8F6482 Series).

BitMask Specifies the bit value of one or more pins within the port
that are being configured as general purpose inputs.
RM006404-0215 BSP_GPIO_DD_In

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

60
BSP_GPIO_DD_OUT

Prototype
void BSP_GPIO_DD_Out(UINT16 Port, UINT8 BitMask);

#define BSP_GPIO_DD_Out(Port, BitMask) \
{ \
 GPIO_PxADDR((Port)) = __DATA_DIRECTION; \
 GPIO_PxCTL((Port)) &= ~(BitMask); \
}

Parameters

Return Value
None.

Description
The BSP_GPIO_DD_Out macro is used to configure the specified GPIO
port pin(s) as outputs.

Correct Usage
None.

Port Specifies the GPIO port whose pin(s) are being configured
as outputs. The value of the Port parameter must be
between BSP_GPIO_PORT_A to BSP_GPIO_PORT_J
(excluding BSP_GPIO_PORT_I, which is not defined for
the Z8F6482 Series).

BitMask Specifies the bit value of one or more pins within the port
that are being configured as general purpose outputs.
General Purpose Input/Output API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

61
BSP_GPIO_SET

Prototype
void BSP_GPIO_Set(UINT16 Port, UINT8 BitMask);

#define BSP_GPIO_Set(Port,BitMask) \
{ \
 GPIO_PxOUT((Port)) |= (BitMask); \
}

Parameters

Return Value
None.

Description
The BSP_GPIO_Set macro is used to drive a logic 1 to the specified
GPIO port pin(s).

Correct Usage
The specified port pin(s) must have previously been configured for output
mode (see the BSP_GPIO_DD_Out API on page 60).

Port Specifies the GPIO port whose pin(s) are to be driven to
the logic 1 (set) state. The value of the Port parameter
must be between BSP_GPIO_PORT_A to
BSP_GPIO_PORT_J (excluding BSP_GPIO_PORT_I,
which is not defined for the Z8F6482 Series).

BitMask Specifies the bit value of one or more pins within the port
to be driven high (logic 1).
RM006404-0215 BSP_GPIO_Set

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

62
BSP_GPIO_CLEAR

Prototype
void BSP_GPIO_Clear(UINT16 Port, UINT8 BitMask);

#define BSP_GPIO_Clear(Port,BitMask) \
{ \
 GPIO_PxOUT((Port)) &= ~(BitMask); \
}

Parameters

Return Value
None.

Description
The BSP_GPIO_Clear macro is used to drive a logic 0 to the specified
GPIO port pin(s).

Correct Usage
The specified port pin(s) must have previously been configured for output
mode (see the BSP_GPIO_DD_Out API on page 60).

Port Specifies the GPIO port whose pin(s) are to be driven to
the logic 0 (clear) state. The value of the Port parameter
must be between BSP_GPIO_PORT_A to
BSP_GPIO_PORT_J (excluding BSP_GPIO_PORT_I
which is not defined for the Z8F6482 Series).

BitMask Specifies the bit value of one or more pins within the port
to be driven low (logic 0).
General Purpose Input/Output API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

63
BSP_GPIO_TOGGLE

Prototype
void BSP_GPIO_Toggle(UINT16 Port, UINT8 BitMask);

#define BSP_GPIO_Toggle(Port,BitMask) \
{ \
 GPIO_PxOUT((Port)) ^= (BitMask); \
}

Parameters

Return Value
None.

Description
The BSP_GPIO_Toggle macro is used to invert the state of the specified
GPIO port pin(s).

Correct Usage
The specified port pin(s) must have previously been configured for output
mode (see the BSP_GPIO_DD_Out API on page 60).

Port Specifies the GPIO port whose pin(s) are to be inverted;
i.e., port pin(s) currently driven to a logic 1 state will be
driven to a logic 0 and vice versa. The value of the Port
parameter must be between BSP_GPIO_PORT_A to
BSP_GPIO_PORT_J (excluding BSP_GPIO_PORT_I
which is not defined for the Z8F6482 Series).

BitMask Specifies the bit value of one or more pins within the port
to be toggled.
RM006404-0215 BSP_GPIO_Toggle

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

64
Inter-Integrated Circuit API

The BSP I2C API contains support for an I2C device acting either as a I2C
Master or as an I2C Slave (but not as both simultaneously). The device
can be configured to operate in Poll, Interrupt, or DMA modes.

I2C Functions in the BSP API
The I2C API implements the following functions:

• BSP_I2C_Init – see page 66

• BSP_I2C_Stop – see page 67

• I2C_Setup Functions – see page 68
– I2C_Setup_Master_Polling
– I2C_Setup_Slave_Polling
– I2C_Setup_Master_Irq
– I2C_Setup_Slave_Irq
– I2C_Setup_Master_Dma
– I2C_Setup_Slave_Dma

• I2C Transfer and Receive Functions – see page 69
– I2C_Master_Transmit
– I2C_Master_Receive
– I2C_Slave_Transmit
– I2C_Slave_Receive

• I2C_Set_Slave_Buffer(); – see page 71
– I2C_Set_Slave_TxBuffer
– I2C_Set_Slave_RxBuffer

• I2C_Brg – see page 72
– UINT16 I2C_Brg
Inter-Integrated Circuit API RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

65
• BSP_I2C_General_Call_Address – see page 73
RM006404-0215 I2C Functions in the BSP API

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

66
BSP_I2C_INIT

Prototype
BSP_STATUS BSP_I2C_Init (BSP_AES * pAES)

Parameter

Return Value
BSP_ERR_SUCCESS if no errors occur.

BSP_ERR_IN_USE if the I2C has already been initialized and
BSP_I2C_Stop() was not subsequently called; or if a DMA channel is
requested which was previously initialized.

BSP_ERR_INVALID_PARAM for some invalid configurations of the
BSP_I2C structure.

Description
Use to configure the I2C API before first use. May also be used to recon-
figure the I2C API for a different mode (Polling, Irq, or Dma), switch
between master and slave, or to change the baud rate.

Correct Usage
This function should not be called if the I2C has been previously initial-
ized; it should only be called after first calling BSP_I2C_Stop(); other-
wise, an error status will be returned.

pI2C A pointer to a BSP_I2C structure that configures I2C
operations; see the I2C Structures and Unions in the BSP
API section on page 168.
Inter-Integrated Circuit API RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

67
BSP_I2C_STOP

Prototype
BSP_STATUS BSP_I2C_Stop (void)

Parameters
n/a

Return Value
BSP_ERR_SUCCESS if no errors occur.

BSP_ERR_BUSY if called while an transaction is in progress.

Description
This API can be used to shut down the I2C gracefully when it is no longer
required, and can also be used to undo a previous initialization prior to
reconfiguring the I2C.

Correct Usage
This function should not be called if an I2C transaction is in progress.
RM006404-0215 BSP_I2C_Stop

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

68
I2C_SETUP FUNCTIONS

Prototypes
reentrant BSP_STATUS I2C_Setup_Master_Polling(BSP_I2C *pI2c);
reentrant BSP_STATUS I2C_Setup_Slave_Polling(BSP_I2C *pI2c);

reentrant BSP_STATUS I2C_Setup_Master_Irq(BSP_I2C *pI2c);
reentrant BSP_STATUS I2C_Setup_Slave_Irq(BSP_I2C *pI2c);

reentrant BSP_STATUS I2C_Setup_Master_Dma(BSP_I2C *pI2c);
reentrant BSP_STATUS I2C_Setup_Slave_Dma(BSP_I2C *pI2c);

Description
The functions should never be called directly. Rather, set the fpSetup
member of the appropriate structure in I2C_CFG union to select the
desired mode of operation. Any error return value will itself be returned
by BSP_I2C_Init().
Inter-Integrated Circuit API RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

69
I2C TRANSFER AND RECEIVE FUNCTIONS

Prototypes
BSP_STATUS I2C_Master_Transmit (UINT16 slaveAddress,
 UINT8 tenBitSlave,
 HANDLE txBuf,
 BSP_SIZE len);

BSP_STATUS I2C_Master_Receive (UINT16 slaveAddress,
 UINT8 tenBitSlave,
 HANDLE rxBuf,
 BSP_SIZE len);

BSP_STATUS I2C_Slave_Transmit(HANDLE txBuf,
 BSP_SIZE len);

BSP_STATUS I2C_Slave_Receive(HANDLE rxBuf,
 BSP_SIZE len);

Parameter

Return Value
BSP_ERR_SUCCESS if no errors occur.

BSP_ERR_BUSY if called while an transaction is in progress.

slaveAddress For the master transmit and receive operations, the
address of the I2C slave to use.

tenBitSlave For the master transmit and receive operations,
nonzero if the address is a 10 bit address.

txBuf, rxBuf The address of the message to transmit or to place the
message received.

len The size in bytes of the message buffer.
RM006404-0215 I2C Transfer and Receive Functions

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

70
Any error in the message transmission or reception is passed as the status
argument to the fpXferDone callback function.

Description
These are the principal calls to initiate an I2C transfer. In all cases, when
the call returns BSP_ERR_SUCCESS indicating that the transfer was
accepted, the result of the transfer will be passed through the fpXfer-
Done callback function passed in the BSP_I2C structure used to initiate
the I2C API.

These are not actually functions but macros defined in BSP_I2C.h.

Note:

Note:
Inter-Integrated Circuit API RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

71
I2C_SET_SLAVE_BUFFER();

Prototype
BSP_STATUS I2C_Set_Slave_Buffer(HANDLE Buf,
 BSP_SIZE len,
 UINT8 transmit);

Parameters

Return Value
BSP_ERR_SUCCESS if no errors occur.

BSP_ERR_BUSY if called while an transaction is in progress.

Description
Use this API on an I2C slave application if you do not know whether the
master will issue a transmit or a receive request first.

Correct Usage
The macros I2C_Set_Slave_TxBuffer and
I2C_Set_Slave_RxBuffer are provided, which basically hide the
transmit parameter in the function call.

Buf The buffer to transmit from or receive into.
len The size of the buffer in bytes.
transmit nonzero if Buf is a transmit buffer.
RM006404-0215 I2C_Set_Slave_Buffer();

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

72
I2C_BRG

Prototype
UINT16 I2C_Brg(UINT32 clockRate, UINT32 baudRate);

Parameters

Return Value
The value to place in the BSP_I2C structure to obtain the desired
baudrate.

I2C_Brg is actually a macro.

clockRate The system clock rate (in ticks per second).
baudRate The desired baud rate.

Note:
Inter-Integrated Circuit API RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

73
BSP_I2C_GENERAL_CALL_ADDRESS

Prototype
void BSP_I2C_General_Call_Address(UINT8 enable);

Parameter

Description
Use BSP_I2C_General_Call_Address() to enable receiving mes-
sages addressed to the I2C General Call Address (7-bit address of 0) in an
I2C Slave application. By default, receiving such messages is disabled.

BSP_I2C_General_Call_Address is actually a macro.

enable Nonzero to enable general call addresses in a slave.

Note:
RM006404-0215 BSP_I2C_General_Call_Address

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

74
Interrupt Controller API Reference

The BSP interrupt controller module provides a set of macros to simplify
interrupt configuration and processing. These macros are defined in the
Z8F6482_IRQ_SFR.h and BSP_IRQ.h header files. The macro defini-
tions in the Z8F6482_IRQ_SFR.h header file identify all of the Z8F6482
interrupt sources monitored by the interrupt controller. The macros
defined in the BSP_IRQ.h header file are described in the remainder of
this section.

IRQ Macros in the BSP API
The BSP_IRQ.h header file defines the following macros:

• BSP_IRQxEN_DBLD – see page 75

• BSP_IRQxEN_LO – see page 77

• BSP_IRQxEN_NOM – see page 78

• BSP_IRQxEN_HI – see page 80

• BSP_IRQx_CLR – see page 82

• BSP_IRQ_ES_FALLING – see page 84

• BSP_IRQ_ES_RISING – see page 85

• BSP_IRQ_SS0_FIRST – see page 86

• BSP_IRQ_SS0_SECOND – see page 88

• BSP_IRQ_SS1_FIRST – see page 90

• BSP_IRQ_SS1_SECOND – see page 91

• BSP_IRQ_DISABLE – see page 92

• BSP_IRQ_RESTORE – see page 93
Interrupt Controller API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

75
BSP_IRQXEN_DBLD

Prototype
#define BSP_IRQxEN_DBLD(Base, Bit) \
{ \
 IRQ_ENH((Base)) &= ~(Bit); \
 IRQ_ENL((Base)) &= ~(Bit); \
}

Parameters

Return Value
None.

Description
This macro is used to disable one or more interrupt sources within the
specified bank. For example, to disable the UART0 transmit and receive
interrupt signals in bank 0, application programs may use the following
macro invocation:

BSP_IRQxEN_DBLD(BSP_IRQ0, IRQ_U0RX | IRQ_U0TX);

To learn more about the interrupt controller, refer to the Z8F6482 Series
Product Specification.

Base Specifies which bank of interrupt control registers contains
the interrupt signal(s) specified by the Bit parameter. The
value of Base must be one of BSP_IRQ0, BSP_IRQ3.

Bit Specifies the bit value of one or more interrupt signals to
be disabled within the bank specified by the Base
parameter.
RM006404-0215 BSP_IRQxEN_DBLD

http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

76
Correct Usage
None.
Interrupt Controller API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

77
BSP_IRQXEN_LO

Prototype
#define BSP_IRQxEN_LO(Base, Bit) \
{ \
 IRQ_ENH((Base)) &= ~(Bit); \
 IRQ_ENL((Base)) |= (Bit); \
}

Parameters

Return Value
None.

Description
This macro enables one or more interrupt sources within the specified
bank as a low priority interrupt(s). For example, to configure the UART0
transmit and receive interrupt signals as low priority interrupts, applica-
tion programs may use the following macro invocation:
BSP_IRQxEN_LO(BSP_IRQ0, IRQ_U0RX | IRQ_U0TX);

To learn more about the interrupt controller, refer to the Z8F6482 Series
Product Specification.

Correct Usage
None.

Base Specifies which bank of interrupt control registers contains
the interrupt signal(s) specified by the Bit parameter. The
value of Base must be one of BSP_IRQ0, BSP_IRQ3.

Bit Specifies the bit value of one or more interrupt signals to
be enabled at low priority within the bank specified by the
Base parameter.
RM006404-0215 BSP_IRQxEN_LO

http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

78
BSP_IRQXEN_NOM

Prototype
#define BSP_IRQxEN_NOM(Base, Bit) \
{ \
 IRQ_ENH((Base)) |= (Bit); \
 IRQ_ENL((Base)) &= ~(Bit); \
}

Parameters

Return Value
None.

Description
This macro enables one or more interrupt sources within the specified
bank as a medium (nominal) priority interrupt(s). For example, to config-
ure the UART0 transmit and receive interrupt signals as medium priority
interrupts, application programs may use the following macro invocation:

BSP_IRQxEN_NOM(BSP_IRQ0, IRQ_U0RX | IRQ_U0TX);

To learn more about the interrupt controller, refer to the Z8F6482 Series
Product Specification.

Base Specifies which bank of interrupt control registers contains
the interrupt signal(s) specified by the Bit parameter. The
value of Base must be one of BSP_IRQ0, BSP_IRQ3.

Bit Specifies the bit value of one or more interrupt signals to
be enabled at nominal priority (between low and high
priority) within the bank specified by the Base parameter.
Interrupt Controller API Reference RM006404-0215

http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

79
Correct Usage
None.
RM006404-0215 BSP_IRQxEN_NOM

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

80
BSP_IRQXEN_HI

Prototype
#define BSP_IRQxEN_HI(Base, Bit) \
{ \
 IRQ_ENH((Base)) |= (Bit); \
 IRQ_ENL((Base)) |= (Bit); \
}

Parameters

Return Value
None.

Description
This macro enables one or more interrupt sources within the specified
bank as a high priority interrupt(s). For example, to configure the UART0
transmit and receive interrupt signals as high priority interrupts, applica-
tion program may use the following macro invocation:

BSP_IRQxEN_HI(BSP_IRQ0, IRQ_U0RX | IRQ_U0TX);

To learn more about the interrupt controller, refer to the Z8F6482 Series
Product Specification.

Base Specifies which bank of interrupt control registers contains
the interrupt signal(s) specified by the Bit parameter. The
value of Base must be one of BSP_IRQ0, BSP_IRQ3.

Bit Specifies the bit value of one or more interrupt signals to
be enabled at high priority within the bank specified by the
Base parameter.
Interrupt Controller API Reference RM006404-0215

http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

81
Correct Usage
None.
RM006404-0215 BSP_IRQxEN_HI

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

82
BSP_IRQX_CLR

Prototype
#define BSP_IRQx_CLR(Base, Bit) \
{ \
 IRQ_REQ((Base)) &= ~(Bit); \
}

Parameters

Return Value
None.

Description
This macro is used to dismiss an interrupt signal that has been latched in
the interrupt controller. After an interrupt signal has been latched within
the interrupt controller a vectored interrupt will occur (preempting the
foreground thread of execution) as soon as interrupts are enabled (both
global interrupts and the target interrupt signal). This macro is used to dis-
miss the specified interrupt signal(s). For example, to dismiss pending
UART0 transmit and receive interrupt signals, application programs may
use the following macro invocation:

BSP_IRQx_CLR(BSP_IRQ0, IRQ_U0RX | IRQ_U0TX);

Base Specifies which bank of interrupt control registers contains
the interrupt signal(s) specified by the Bit parameter. The
value of Base must be one of BSP_IRQ0, BSP_IRQ3.

Bit Specifies the bit value of one or more interrupt signals to
be dismissed (i.e., cleared) within the bank specified by the
Base parameter.
Interrupt Controller API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

83
To learn more about the interrupt controller, refer to the Z8F6482 Series
Product Specification.

Correct Usage
None.
RM006404-0215 BSP_IRQx_CLR

http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

84
BSP_IRQ_ES_FALLING

Prototype
#define BSP_IRQ_ES_FALLING(Bit) \
{ \
 IRQES &= ~(Bit); \
}

Parameters

Return Value
None.

Description
Some GPIO port pins can be configured to generate either rising edge or
falling edge interrupts. This macro is used to select falling edge interrupt
generation for the set of interrupt sources corresponding to the Bit
parameter. For example, to configure PA4 and PD3 to generate falling
edge interrupts, application programs may use the following macro invo-
cation:

BSP_IRQ_ES_FALLING(IRQ_PAD4 | IRQ_PAD3);

To learn more about the interrupt controller, refer to the Z8F6482 Series
Product Specification.

Correct Usage
None.

Bit Specifies the bit value of one or more interrupt signals to
be configured for falling edge interrupts.
Interrupt Controller API Reference RM006404-0215

http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

85
BSP_IRQ_ES_RISING

Prototype
#define BSP_IRQ_ES_RISING(Bit) \
{ \
 IRQES |= (Bit); \
}

Parameters

Return Value
None.

Description
Some GPIO port pins can be configured to generate either rising edge or
falling edge interrupts. This macro is used to select rising edge interrupt
generation for the set of interrupt sources corresponding to the Bit
parameter. For example, to configure PA4 and PD3 to generate rising
edge interrupts, application programs may use the following macro invo-
cation:

BSP_IRQ_ES_RISING(IRQ_PAD4 | IRQ_PAD3);

To learn more about the interrupt controller, refer to the Z8F6482 Series
Product Specification.

Correct Usage
None.

Bit Specifies the bit value of one or more interrupt signals to
be configured for rising edge interrupts.
RM006404-0215 BSP_IRQ_ES_RISING

http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

86
BSP_IRQ_SS0_FIRST

Prototype
#define BSP_IRQ_SS0_FIRST(Bit) \
{ \
 IRQSS0 &= ~(Bit); \
}

Parameters

Return Value
None.

Description
Some Z8F6482 interrupt signals are shared between two sources. This
macro is used to select the first alternate interrupt source to drive the
shared interrupt request signal. For example either GPIO pin PA4 or PD4
can drive the IRQ_PAD4 interrupt request signal. To select PA4 as the
interrupt source that drives the PAD4 interrupt request signal, application
programs may use the following macro invocation:

BSP_IRQ_SS0_FIRST(IRQ_PAD4);

To learn more about the interrupt controller, refer to the Z8F6482 Series
Product Specification.

Bit Specifies the bit value of one or more interrupt signals with
shared sources to be configured such that interrupts from
the first source are selected and interrupts from the second
source are ignored. Bit should be a combination of 1 or
more of the following values: IRQ_PA7LVD, IRQ_PA6C0,
IRQ_PA5C1, IRQ_PAD4, IRQ_PAD3, IRQ_PAD2, or
IRQ_PAD1.
Interrupt Controller API Reference RM006404-0215

http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

87
Correct Usage
None.
RM006404-0215 BSP_IRQ_SS0_FIRST

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

88
BSP_IRQ_SS0_SECOND

Prototype
#define BSP_IRQ_SS0_SECOND(Bit) \
{ \
 IRQSS0 |= (Bit); \
}

Parameters

Return Value
None.

Description
Some Z8F6482 interrupt signals are shared between two sources. This
macro is used to select the second alternate interrupt source to drive the
shared interrupt request signal. For example either GPIO pin PA4 or PD4
can drive the IRQ_PAD4 interrupt request signal. To select PD4 as the
interrupt source that drives the PAD4 interrupt request signal, application
programs may use the following macro invocation:

BSP_IRQ_SS0_SECOND(IRQ_PAD4);

To learn more about the interrupt controller, refer to the Z8F6482 Series
Product Specification.

Bit Specifies the bit value of one or more interrupt signals with
shared sources to be configured such that interrupts from
the second source are selected and interrupts from the first
source are ignored. Bit should be a combination of 1 or
more of the following values: IRQ_PA7LVD, IRQ_PA6C0,
IRQ_PA5C1, IRQ_PAD4, IRQ_PAD3, IRQ_PAD2, or
IRQ_PAD1.
Interrupt Controller API Reference RM006404-0215

http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

89
Correct Usage
None.
RM006404-0215 BSP_IRQ_SS0_SECOND

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

90
BSP_IRQ_SS1_FIRST

Prototype
#define BSP_IRQ_SS1_FIRST(Bit) \
{ \
 IRQSS1 &= ~(Bit); \
}

Parameters

Return Value
None.

Description
This macro is similar to the BSP_IRQ_SS0_FIRST macro but is to be
used when selecting the interrupt source for the IRQ_PC3DMA3 or
IRQ_PC2DMA2 interrupt signal. To learn more, see the description of the
BSP_IRQ_SS0_FIRST macro on page 86.

Correct Usage
None.

Bit Specifies the bit value of one or more interrupt signals with
shared sources to be configured such that interrupts from
the first source are selected and interrupts from the second
source are ignored.
Interrupt Controller API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

91
BSP_IRQ_SS1_SECOND

Prototype
#define BSP_IRQ_SS1_SECOND(Bit) \
{ \
 IRQSS1 |= (Bit); \
}

Parameters

Return Value
None.

Description
This macro is similar to the BSP_IRQ_SS0_SECOND macro but is to be
used when selecting the interrupt source for the IRQ_PC3DMA3 or
IRQ_PC2DMA2 interrupt signal. To learn more, see the description of the
BSP_IRQ_SS0_SECOND macro on page 88.

Correct Usage
None.

Bit Specifies the bit value of one or more interrupt signals with
shared sources to be configured such that interrupts from
the second source are selected and interrupts from the first
source are ignored.
RM006404-0215 BSP_IRQ_SS1_SECOND

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

92
BSP_IRQ_DISABLE

Prototype
#define BSP_IRQ_DISABLE(Flags) \
{ \
 (Flags) = IRQCTL; \
 DI(); \
}

Parameters

Return Value
None. Global interrupts are disabled after execution of this macro.

Description
This macro is used to globally disable vectored interrupts. Applications
use this macro in conjunction with the BSP_IRQ_RESTORE macro to
implement a noninterruptible block of code (often referred to as a critical
section). Prior to disabling interrupts the state of the interrupt controller is
assigned to the Flags parameter allowing the BSP_IRQRESTOR macro to
restore the interrupt controller to the state it was in prior to executing the
BSP_IRQ_DISABLE macro.

Correct Usage
None.

Flags An application-defined variable assigned the current value
of the interrupt control special function register (IRQCTL).
The Flags variable should be local to a function and reside
on the run time stack to allow nesting of interrupt disable/
enable macros.
Interrupt Controller API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

93
BSP_IRQ_RESTORE

Prototype
#define BSP_IRQ_RESTORE(Flags) \
{ \
 IRQCTL = (Flags); \
}

Parameter:

Return Value
None.

Description
This macro is used to return the interrupt controller to the state it was in
when the BSP_IRQ_DISABLE macro was invoked. If global interrupts
were enabled when the BSP_IRQ_DISABLE macro was invoked, this
macro will reenable global interrupts; otherwise global interrupts will
remain disabled after this macro is invoked.

Correct Usage
None.

Flags Application defined variable whose current value is written
to the global interrupt controller (IRQCTL). The Flags
variable should be local to a function and reside on the run
time stack to allow nesting of interrupt disable/enable
macros. The value of the Flags variable should have
previously been set by invoking the BSP_IRQ_DISABLE
macro.
RM006404-0215 BSP_IRQ_RESTORE

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

94
Serial Peripheral Interface API
Reference

The BSP SPI driver supports both the Serial Peripheral Interface (SPI)
protocol and the Inter-IC Sound (I2S) protocol. The SPI API includes sup-
port for Master, Multi-Master (only with the SPI protocol) and Slave
modes of operation. The SPI driver can be configured to transfer data
using CPU polling, interrupt control or DMA (only with the SPI proto-
col).

SPI Functions in the BSP API
The SPI API implements the following functions:

• BSP_SPI_Init – see page 95

• BSP_SPI_Xfer – see page 97

• BSP_SPI_Receive – see page 101

• BSP_SPI_Transmit – see page 102

• BSP_SPI_Stop – see page 103
Serial Peripheral Interface API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

95
BSP_SPI_INIT

Prototype
BSP_STATUS BSP_SPI_Init(UINT8 Idx, BSP_SPI *pSpi);

Parameters

Return Value
BSP_ERR_SUCCESS if no errors occur.

BSP_ERR_IN_USE if the SPI driver has already been initialized and
BSP_SPI_Stop() was not subsequently called; or if the SPI configura-
tion is requesting a DMA channel which is used by some other entity.

BSP_ERR_INVALID_PARAM is returned (with the debug version of the
BSP library) if the Idx parameter is larger than (BSP_NUM_SPI –1), if the
pSpi parameter is 0 or if pSpi references a configuration specifying an
invalid DMA channel.

Using the debug version of the BSP library will cause the USB driver to
perform additional parameter validation which could result in a decrease in
driver performance.

Idx Specifies which SPI device is being initialized. Idx must
be in the range of 0 to (BSP_NUM_SPI –1).

pSpi Pointer to a BSP_SPI data structure that the application
must initialize to effect a particular SPI (or I2S) mode of
operation. To learn more see the SPI Data Structures in the
BSP API section on page 183.

Note:
RM006404-0215 BSP_SPI_Init

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

96
Description
This routine must be called before applications call any other SPI API.
After this API is called, it may not be called again until the
BSP_SPI_Stop API is called. This routine will acquire and initialize the
hardware resources (GPIO pins, interrupts, and DMA channels) necessary
to enable the SPI controller in accordance with the configuration informa-
tion supplied in the BSP_SPI structure.

Correct Usage
If the BSP_SPI configuration structure specifies that DMA is used for
data transfer, be sure to call the BSP_DMA_Init API before calling this
function.
Serial Peripheral Interface API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

97
BSP_SPI_XFER

Prototype
BSP_STATUS BSP_SPI_Xfer
(
 UINT8 Idx,
 HANDLE hTxBuf,
 HANDLE hRxBuf,
 BSP_SIZE Len
);

Parameters

Return Value
BSP_ERR_BUSY is returned if the specified SPI device has not yet com-
pleted a previous transfer request.

BSP_ERR_INVALID_PARAM is returned (with the debug version of the
BSP library) if the Idx parameter is out of range, both the hTxBuf and
hRxBuf parameters are NULLPTR, if Len is 0 or both receive and transmit
operations have been disabled on the SPI controller.

Idx Specifies which SPI device to use for the data transfer
operation. Idx must be in the range of 0 to (BSP_NUM_SPI
–1).

hTxBuf Application buffer containing data to be sent to the remote
SPI device. For a receive-only transfer operation, set
hTxBuf to NULLPTR (0).

hRxBuf Application buffer to be filled with data received from the
remote SPI device. For a transmit-only operation set
hRxBuf to NULLPTR (0).

Len Specifies the number of bytes of data to be transferred.
RM006404-0215 BSP_SPI_Xfer

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

98
If there is no error, this API returns the number of bytes of data remaining
in the transfer. For Poll Mode (synchronous) transfers, a return value
other than 0 indicates the number of bytes that could not be transferred.
For interrupt and DMA transfers (that complete asynchronously) the
return value is typically equal to the Len parameter indicating there are
Len bytes remaining in the data transfer operation.

Description
The SPI protocol allows for full duplex data transfer; i.e., one bit of infor-
mation is received every time one bit of information is sent, because Rx
and Tx data are transmitted over physically separate connections. Conse-
quently, this API allows an application to request full-duplex data trans-
fer. This API sends Len bytes of data from the application buffer
referenced by hTxBuf to the remote SPI device and places Len bytes of
data received from the remote SPI device into the application buffer spec-
ified by the hRxBuf parameter.

Applications may set either the hTxBuf parameter or the hRxBuf param-
eter to NULLPTR for half-duplex data transfer.

When the transfer operation complete the SPI driver will call the
fpXferDone callback routine (part of the BSP_SPI structure passed to
BSP_SPI_Init) to inform the application that the transfer has completed
and report the final transfer status. If the fpXferDone member of the
BSP_SPI structure is NULLPTR (0), then the SPI driver will not issue an
application callback when the SPI transfer completes.

The function prototype of the transfer completion routine is shown the
following code snippet:

reentrant void SpiXferDoneCallback
(
 UINT8 Idx,
 UINT8 Status,
 BSP_SIZE XferLen
);
Serial Peripheral Interface API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

99
The Idx parameter indicates the SPI driver interface that is reporting the
transfer completion. The value of Idx is between 0 and (BSP_NUM_SPI
–1). The Status parameter reports the hardware status of the SPI controller
at the time the transfer completed. The meaning of individual bits within
the Status byte can be found in the description of the ESPI Status Register
(ESPISTAT) in the F6482 Series Product Specification (PS0294). The
XferLen parameter reports the number of bytes in the original transfer
that could not be completed because of the error indicated by the Status
parameter. If the transfer completes without error the value of the Xfer-
Len parameter is 0.

Correct Usage
SPI is a master-slave protocol; all data transfers must be initiated by the
master. Consequently, if the BSP SPI driver is configured to operate in
Slave Mode and the BSP_SPI_Xfer API is called to send and/or receive
data, the actual data transfer cannot begin until the master initiates an SPI
transfer. Similarly, an error-free slave data transfer operation will not ter-
minate until exactly Len bytes have been transferred; such an issue can
have a significant impact on the behavior of Slave Mode applications.

If the SPI driver is configured to operate in Slave Mode using CPU poll-
ing for data transfer, it is possible that this API will not return control
back to the calling application for a significant (possibly unbound)
amount of time. When using interrupts or DMA for slave data transfer the
BSP_SPI_Xfer API will typically return immediately while the SPI
transfer completes asynchronously in the background.

For all slave data transfer modes (polling, interrupt, and DMA), there
could be a significant (possibly unbound) delay between the time the
BSP_SPI_Xfer API is called to initiate an SPI data transfer until the
application’s fpXferDone callback routine is called. The length of the
delay depends on how long the slave must wait for the master to send Len
bytes of data. As an (exaggerated) example, if the slave expects 5 bytes of
data and the master sends 1 byte every hour, then the slave transfer opera-
tion will complete in 5 hours.
RM006404-0215 BSP_SPI_Xfer

http://www.zilog.com/docs/ps0294.pdf

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

100
Applications are cautioned against using polling for slave-mode transfers
unless the slave application knows that the master is about to initiate a
transfer and knows exactly how much data should be transferred to/from
the master. Otherwise SPI polling could consume the entire CPU band-
width preventing the application from performing any other useful task.
For this reason most slave applications will benefit from using either of
the asynchronous data transfer methods (interrupt or DMA) which allow
the application to use the CPU to perform application-specific tasks while
waiting for the master to complete the SPI transfer.
Serial Peripheral Interface API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

101
BSP_SPI_RECEIVE

Prototype
BSP_STATUS BSP_SPI_Receive
(
 UINT8 Idx,
 HANDLE hBuf,
 BSP_SIZE Len
);

#define BSP_SPI_Receive(Idx, hBuf, Len) \
BSP_SPI_Xfer((Idx), NULLPTR, (hBuf), (Len))

Parameters

Return Value
Refer to the BSP_SPI_Xfer API for a description of the values returned
by this macro.

Description
The BSP_SPI_Receive API is just a macro that calls the
BSP_SPI_Xfer routine with the hTxBuf parameter set to NULLPTR
(0). Refer to the BSP_SPI_Xfer API to learn more.

Correct Usage
None.

Idx Specifies which SPI device to use for the data transfer
operation. Idx must be in the range of 0 to (BSP_NUM_SPI
–1).

hBuf Application buffer to be filled with data received from the
remote SPI device.

Len Specifies the maximum number of bytes to be received.
RM006404-0215 BSP_SPI_Receive

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

102
BSP_SPI_TRANSMIT

Prototype
BSP_STATUS BSP_SPI_Transmit
(
 UINT8 Idx,
 HANDLE hTxBuf,
 BSP_SIZE Len
);

#define BSP_SPI_Transmit(Idx, hBuf, Len) \
BSP_SPI_Xfer((Idx), (hBuf), NULLPTR, (Len))

Parameters

Return Value
Refer to the BSP_SPI_Xfer API for a description of the values returned
by this macro.

Description
The BSP_SPI_Transmit API is just a macro that calls the
BSP_SPI_Xfer routine with the hRxBuf parameter set to NULLPTR
(0). Refer to the BSP_SPI_Xfer API to learn more.

Correct Usage
None.

Idx Specifies which SPI device to use for the data transfer
operation. Idx must be in the range of 0 to (BSP_NUM_SPI
–1).

hBuf Application buffer containing data to be sent to the remote
SPI device.

Len Specifies the number of bytes of data to be transmitted.
Serial Peripheral Interface API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

103
BSP_SPI_STOP

Prototype
BSP_STATUS BSP_SPI_Stop(UINT8 Idx);

Parameters

Return Value
BSP_ERR_SUCCESS if no errors occur.

BSP_ERR_IN_USE if an attempt is made to stop an SPI device that has
not yet completed a previous transfer request.

BSP_ERR_INVALID_PARAM is returned (with the debug version of the
BSP library) if the Idx parameter is out of range.

Description
If the SPI driver is idle, this API can be used to return the SPI controller to
a quiescent state. If this routine is successful, all BSP resources acquired
by the BSP_SPI_Init API are released and the BSP_SPI structure can
be modified to initiate a different SPI configuration by calling
BSP_SPI_Init.

Correct Usage
None.

Idx Specifies which SPI device is being returned to the system
for subsequent reallocation. Idx must be in the range of 0
to (BSP_NUM_SPI –1).
RM006404-0215 BSP_SPI_Stop

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

104
Timer API Reference

The Timer module provides macros to start, stop, and read the count of
one of the integrated timers. The BSP does not provide any services to
configure timers, because this scenario typically only involves writing
configuration values to the timer’s special function registers. The
Z8F6482_TMR_SFR.h header file contains macro definitions that can be
used to configure timer registers instead of using numerical constants to
improve software legibility.

TMR Macros in the BSP API
The BSP_TMR.h header file defines the following macros:

• BSP_TMR_READ – see page 105

• BSP_TMR_START – see page 106

• BSP_TMR_STOP – see page 107
Timer API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

105
BSP_TMR_READ

Prototype
#define BSP_TMR_READ(Base, x) \
{ \
 asm("ATM"); \
 x = TMR_CNT((Base)); \
}

Parameters

Return Value
None.

Description
This macro provides an interrupt safe method of reading the 16-bit timer
count register while the timer is active. Reading the timer high byte regis-
ter latches the value of the timer low byte; however, if an interrupt occurs
between the time the high byte is read and the low byte is read, and if the
interrupt also reads the timer high and low byte registers, then the 16-bit
value obtained by the foreground task could be corrupted. The use of the
ATM assembly instruction in this macro ensures that the timer high and
low bytes are read in an atomic operation.

 Correct Usage
None.

Base Indicates which timer’s 16-bit count register is being read.
The value of Base must be one of BSP_TMR0, BSP_TMR1,
or BSP_TMR2.

x Application defined variable updated with the 16-bit count
value of the specified timer.
RM006404-0215 BSP_TMR_READ

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

106
BSP_TMR_START

Prototype
#define BSP_TMR_START(Base) \
{ \
 TMR_CTL1((Base)) |= TMR_TEN; \
}

Parameters

Return Value
None.

Description
This macro is used to enable the specified 16-bit reload timer. Depending
on how the timer was configured, the timer may or may not immediately
start counting. The application must configure the timer before using this
macro.

Correct Usage
None.

Base Specifies which of the integrated timers is to be enabled.
The value of Base must be one of BSP_TMR0, BSP_TMR1,
or BSP_TMR2.
Timer API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

107
BSP_TMR_STOP

Prototype
#define BSP_TMR_START(Base) \
{ \
 TMR_CTL1((Base)) &= ~TMR_TEN; \
}

Parameters

Return Value
None.

Description
This macro is used to disable (stop) the specified 16-bit reload timer.

Correct Usage
None.

Base Specifies which of the integrated timers is to be disabled.
The value of Base must be one of BSP_TMR0, BSP_TMR1,
or BSP_TMR2.
RM006404-0215 BSP_TMR_STOP

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

108
Universal Asynchronous Receiver
Transmitter API Reference

The BSP UART API includes support for standard UART mode, Multi-
processor Mode, Local Interconnect Network (LIN) Mode, and DMX
Mode. The UART driver can be configured to transfer data using CPU
polling, interrupt control or DMA.

UART Functions in the BSP API
The UART API implements the following functions:

• BSP_UART_Init – see page 109

• BSP_UART_Transmit – see page 111

• BSP_UART_Receive – see page 114

• BSP_UART_Stop – see page 116

• BSP_MP_Transmit – see page 117

• BSP_DMX_Transmit – see page 119
Universal Asynchronous Receiver Transmitter API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

109
BSP_UART_INIT

Prototype
BSP_STATUS BSP_UART_Init(UINT8 Idx, BSP_UART * pCfg);

Parameters

Return Value
BSP_ERR_SUCCESS if no errors occur.

BSP_ERR_IN_USE if the UART driver has already been initialized and
BSP_UART_Stop() was not subsequently called; or if the UART config-
uration is requesting a DMA channel which is used by some other entity.

BSP_ERR_INVALID_PARAM is returned (with the debug version of the
BSP library) if the Idx parameter is larger than (BSP_NUM_UART –1), if
the pCfg parameter is 0 or if pCfg references a configuration specifying
an invalid DMA channel.

Using the debug version of the BSP library will cause the UART driver to
perform additional parameter validation which could result in a decrease in
driver performance.

Idx Specifies which UART device is being initialized. Idx
must be in the range of 0 to (BSP_NUM_UART –1).

pCfg Pointer to a BSP_UART data structure that the application
must initialize to effect a particular UART mode of
operation. To learn more, see the UART Data Structures in
the BSP API section on page 190.

Note:
RM006404-0215 BSP_UART_Init

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

110
Description
This routine must be called before applications call any other UART API.
After this API is called, it may not be called again until the
BSP_UART_Stop API is called. This routine will acquire and initialize
the hardware resources (GPIO pins, interrupts, and DMA channels) nec-
essary to enable the UART controller in accordance with the configura-
tion information supplied in the BSP_UART structure.

Correct Usage
If the BSP_UART configuration structure specifies that DMA is used for
data transfer, be sure to call the BSP_DMA_Init API before calling this
function.
Universal Asynchronous Receiver Transmitter API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

111
BSP_UART_TRANSMIT

Prototype
BSP_STATUS
BSP_UART_Transmit
(
 UINT8 Idx,
 HANDLE hBuf,
 BSP_SIZE Len
);

Parameters

Return Value
BSP_ERR_SUCCESS is returned if no error occurs.

BSP_ERR_BUSY is returned if the specified UART device has not yet
completed a previous transmit request.

BSP_ERR_INVALID_PARAM is returned (with the debug version of the
BSP library) if the Idx parameter is out of range.

BSP_ERR_FAILURE is returned (with the debug version of the BSP
library) if the BSP_UART structure was initialized with a value of
NULLPTR (0).

Description
This API is used to transmit Len bytes of data from the application trans-
mit buffer referenced by hBuf to the remote UART device(s). Data is

Idx Specifies which UART device to use for the transmit
operation. Idx must be in the range of 0 to
(BSP_NUM_UART –1).

hBuf Application buffer containing data to be transmitted.
Len Specifies the number of bytes of data to be transmitted.
RM006404-0215 BSP_UART_Transmit

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

112
transmitted using the standard UART protocol or LIN Protocol Mode
depending on the setting of the Mode member of the BSP_UART structure
passed to the BSP_UART_Init API.

If the UART driver is configured to use CPU polling for data transfer and
no errors occur, this API does not return control to the caller until all Len
bytes have been transmitted.

If the UART driver is configured to use either Interrupt Mode or DMA
Mode for data transfer and this API returns BSP_ERR_SUCCESS, data is
transmitted in the background while the foreground task continues to run.
When the transmission completes (either successfully or after a transmis-
sion error occurs) the (optional) application transmit complete callback
handler is called.

The function prototype of the transmit completion routine is shown in the
following code snippet:

reentrant void
UartTxCompleteCallback
(
 UINT8 Idx,
 HANDLE hBuf,
 BSP_SIZE Len,
 UINT8 Status
);

The Idx parameter indicates which UART device is reporting its transmit
completion status. The value of Idx is between 0 and (BSP_NUM_UART
–1).

The hBuf parameter references the buffer location immediately following
the last byte of data that was transmitted. The Len parameter is the num-
ber of bytes of data (starting at hBuf) that were not transmitted. If the
transmission completes successfully the value of Len is 0 and hBuf
points to the byte after the last byte in the original transmit buffer.

The Status parameter contains the value of the UART Status 0 register
(UxSTAT0) at the time the transmit operation ended.
Universal Asynchronous Receiver Transmitter API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

113
Correct Usage
None.
RM006404-0215 BSP_UART_Transmit

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

114
BSP_UART_RECEIVE

Prototype
BSP_STATUS
BSP_UART_Receive
(
 UINT8 Idx,
 HANDLE hBuf,
 BSP_SIZE Len
);

Parameters

Return Value
BSP_ERR_INVALID_PARAM is returned (with the debug version of the
BSP library) if the Idx parameter is out of range.

If no error occurs, this routine returns the number of bytes of data that
were placed into the application receive buffer referenced by hBuf.

If the fpRxCfg member of the BSP_UART structure passed to the
BSP_UART_Init API was set to NULLPTR (0), then this API will
always return 0 to indicate that there is no receive data available.

Description
This API is used to obtain data received from the peer UART device
regardless of the setting of the Mode member of the BSP_UART structure
passed to the BSP_UART_Init API; i.e., all UART protocols use the

Idx Specifies the UART device from which data is to be received.
Idx must be in the range of 0 to (BSP_NUM_UART –1).

hBuf Application buffer into which received data is placed.
Len Specifies the size of the application receive buffer referenced

by hBuf.
Universal Asynchronous Receiver Transmitter API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

115
BSP_UART_Receive API to obtained data transmitted by other UART
devices.

If the UART driver is configured to transfer data using CPU polling the
BSP_UART_Receive API operates synchronously; i.e., control is not
returned to the caller until Len bytes of data are transmitted by the peer
device or until a receive error is detected.

If the UART driver is configured to transfer data using interrupts or
DMA, then the UART driver buffers received data in the ring buffer
passed to the BSP_UART_Init API through the pRxBuf structure mem-
ber within the pRxCfg structure. In this instance, the
BSP_UART_Receive API is used to copy data from the ring buffer into
the application buffer which frees up space in the ring buffer.

Correct Usage
Applications are cautioned against using CPU polling for receiving
UART data, because there could be a significant (possibly unbound) delay
between the time the BSP_UART_Receive API is called and the time
until the remote UART device transmits Len bytes of data. During this
time the CPU will be consumed with polling for UART activity prevent-
ing other application tasks from running.
RM006404-0215 BSP_UART_Receive

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

116
BSP_UART_STOP

Prototype
BSP_STATUS BSP_UART_Stop(UINT8 Idx);

Parameters

Return Value
BSP_ERR_SUCCESS if no errors occur.

BSP_ERR_IN_USE if an attempt is made to stop a UART device that has
not yet completed a previous transfer request.

BSP_ERR_INVALID_PARAM is returned (with the debug version of the
BSP library) if the Idx parameter is out of range.

Description
If the UART driver is idle, this API can be used to return the UART con-
troller to a quiescent state. If this routine is successful, all BSP resources
acquired by the BSP_UART_Init API are released and the BSP_UART
structure can be modified to initiate a different UART configuration by
calling BSP_UART_Init.

Correct Usage
None.

Idx Specifies which UART device is being returned to the
system for subsequent reallocation. Idx must be in the
range of 0 to (BSP_NUM_UART –1).
Universal Asynchronous Receiver Transmitter API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

117
BSP_MP_TRANSMIT

Prototype
BSP_STATUS BSP_MP_Transmit
(
 UINT8 Idx,
 UINT8 DestAddr,
 HANDLE hBuf,
 BSP_SIZE Len
);

Parameters

Return Value
BSP_ERR_SUCCESS is returned if no error occurs.

BSP_ERR_BUSY is returned if the specified UART device has not yet
completed a previous transmit request.

BSP_ERR_INVALID_PARAM is returned (with the debug version of the
BSP library) if the Idx parameter is out of range.

BSP_ERR_FAILURE is returned (with the debug version of the BSP
library) if the BSP_UART structure was initialized with a value of
NULLPTR (0).

Idx Specifies which UART device to use for the transmit
operation. Idx must be in the range of 0 to
(BSP_NUM_UART –1).

DestAddr The address of the remote UART device to which data is
transmitted.

hBuf Application buffer containing data to be transmitted.
Len Specifies the number of bytes of data to be transmitted
RM006404-0215 BSP_MP_Transmit

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

118
Description
This API is used to transmit data to remote the remote UART device con-
figured with the 8-bit address DestAddress. Data is transmitted using
the multiprocessor protocol (also known as 9-Bit Mode). In this mode, the
parity bit (MP bit) is used to specify whether the byte being transmitted is
a multiprocessor address byte (MP=1) or a data byte (MP=0).

When the BSP UART driver is configured to operate in multiprocessor
mode the driver only accepts data bytes that follow the MP address byte
that matches the device’s own address. Received data is obtained by call-
ing the BSP_UART_Receive API.

Correct Usage
None.
Universal Asynchronous Receiver Transmitter API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

119
BSP_DMX_TRANSMIT

Prototype
BSP_STATUS BSP_DMX_Transmit
(
 UINT8 Idx,
 UINT8 StartCode,
 HANDLE hBuf,
 BSP_SIZE Len
);

Parameters

Return Value
BSP_ERR_SUCCESS is returned if no error occurs.

BSP_ERR_BUSY is returned if the specified UART device has not yet
completed a previous transmit request.

BSP_ERR_INVALID_PARAM is returned (with the debug version of the
BSP library) if the Idx parameter is out of range.

BSP_ERR_FAILURE is returned (with the debug version of the BSP
library) if the BSP_UART structure was initialized with a value of
NULLPTR (0).

Idx Specifies which UART device to use for the transmit
operation. Idx must be in the range of 0 to
(BSP_NUM_UART –1).

StartCode Specifies the 8-bit start code to transmit before the
DMX data buffer referenced by hBuf.

hBuf Application buffer containing data to be transmitted.
Len Specifies the number of bytes of data to be transmitted
RM006404-0215 BSP_DMX_Transmit

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

120
Description
This API is used to transmit a DMX frame that includes the break, mark
after break, start code a variable number of data slots (as determined by
the value of the Len parameter) and the mark after break sequences.

When the BSP UART driver is configured to operate in DMX mode the
driver only accepts data bytes that begin in the slot that matches its slave
DMX address (and all subsequent data slots in the DMX frame) as well as
the start code that precedes the slot data. The slave DMX address is deter-
mined by the value of the Addr member of the BSP_UART structure
passed to the BSP_UART_Init API. For example if the master transmit a
DMX frame with 10 data slots, the DMX slave whose address is 0x03
will receive the start code and the 3rd through 10th data slot values trans-
mitted by the DMX master. Received data is obtained by calling the
BSP_UART_Receive API.

Correct Usage
None.
Universal Asynchronous Receiver Transmitter API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

121
Universal Serial Bus API
Reference

The BSP USB API supports USB 2.0 full-speed endpoint data transfer
and basic enumeration services for USB devices. The BSP USB API does
not implement any host or USB On-The-Go (OTG) features.

USB Functions in the BSP API
The routines described in this section pertain to the Z8F6482 USB con-
troller and not to individual endpoints.

• BSP_USB_Init – see page 122

• BSP_USB_PollEvents – see page 124

• BSP_USB_Resume – see page 125

• BSP_USB_Stop – see page 127

Endpoint Functions in the BSP USB API
The routines described in this section pertain to a single USB endpoint as
opposed to the USB controller. Before calling any of the following USB
endpoint functions, application programs must first call the
BSP_USB_Init API.

• BSP_USB_EpAbort – see page 128

• BSP_USB_EpInit – see page 129

• BSP_USB_EpStop – see page 132

• BSP_USB_EpTransmit – see page 134

• BSP_USB_EpReceive – see page 137
RM006404-0215 Universal Serial Bus API Reference

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

122
BSP_USB_INIT

Prototype
BSP_STATUS BSP_USB_Init(BSP_USB * pUsb);

Parameters

Return Value
BSP_ERR_SUCCESS if no errors occur.

BSP_ERR_IN_USE if the USB driver has already been initialized and
BSP_USB_Stop() was not subsequently called; or if the USB configura-
tion is requesting a DMA channel which is used by some other entity.

BSP_ERR_INVALID_PARAM is returned (with the debug version of the
BSP library) if the pDeviceDesc or pCfgDesc members of the
BSP_USB structure are 0.

BSP_ERR_INVALID_STATE is returned if this API is called when the
device is physically disconnected from the USB.

Using the debug version of the BSP library will cause the USB driver to
perform additional parameter validation which could result in a decrease in
driver performance.

Description
This routine must be called before applications attempt to configure or
transfer data over USB endpoints. After this API is called, it may not be

pUsb A pointer to a BSP_USB structure that configures the USB
controller; see the USB Data Structures in the BSP API
section on page 211.

Note:
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

123
called again until the BSP_USB_Stop API is called. This routine will
acquire and initialize the hardware resources (GPIO pins, interrupts, and
DMA channels) necessary to enable the USB controller in accordance
with the configuration information supplied in the BSP_USB structure. If
successful, this routine directs the USB controller to attach to the USB
which will cause the host to initiate USB enumeration.

The BSP_USB_Init API is used to configure the following features:
Enumeration. The BSP_USB structure specifies the routine used to pro-
cess standard USB requests as well as USB class or vendor specific
requests.
Descriptors. The BSP_USB structure specifies the set of device, configu-
ration, endpoint, class and/or vendor descriptors used during USB enu-
meration
Data Transfer Method. The BSP USB driver can transfer endpoint data
using interrupts, DMA, or CPU polling.
Application Configuration Callback. When the USB host completes
enumeration or otherwise modifies the current configuration, the BSP
USB driver calls the (optional) application configuration callback to
enable the application to configure the appropriate set of endpoints to ser-
vice that selected configuration.

To learn more, refer to the BSP_USB structure.

Correct Usage
If the BSP_USB configuration structure specifies that DMA is used for
endpoint data transfer be sure to call the BSP_DMA_Init API before call-
ing this function.
RM006404-0215 BSP_USB_Init

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

124
BSP_USB_POLLEVENTS

Prototype
void BSP_USB_PollEvents(void);

Parameters
None

Return Value
None.

Description
Applications that configure the BSP_USB structure to use CPU Poll Mode
for endpoint data transfer should periodically call this routine to allow the
BSP USB driver to service USB events. Failure to do so could result in
data loss and/or the USB host controller could suspend the USB device.

Correct Usage
This routine should only be used by applications that have configured the
BSP USB driver to use CPU polling for endpoint data transfer. Applica-
tions that use DMA or interrupts for USB data transfer should not call this
API under any circumstance.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

125
BSP_USB_RESUME

Prototype
BSP_STATUS BSP_USB_Resume(UINT8 ForceWake);

Parameters

Return Value
BSP_ERR_SUCCESS is returned if no errors occur.

BSP_ERR_FAILURE is returned if the host has disabled USB remote
wake-up (i.e., device-initiated resume) and the ForceWakeup parameter
is 0.

Description
If the USB bus is idle for longer than 3 ms, the USB controller will sus-
pend the device. The BSP USB driver does not issue a callback when the
USB device is suspended. Typically, the USB host will resume USB
activity before the device must perform any data transfer. If the device
application must wake the host prior to host-initiated resume, the applica-
tion can call this API.

The USB host can use the standard SET_FEATURE request to enable
remote wake-up on the device or the CLEAR_FEATURE request to disable
remote wake-up. If this API is called with the ForceWake parameter set to
0, then the device will only issue resume signaling if the device’s remote
wake-up feature has been enabled. If the ForceWake parameter is non-
zero, then the device will initiate resume signaling to the host even if the
host has explicitly disabled remote wake-up.

ForceWake If nonzero, specifies that the BSP USB driver should
initiate resume signaling even if the host has disabled
this feature.
RM006404-0215 BSP_USB_Resume

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

126
Correct Usage
In suspend state a device that is powered from USB and configured for
remote wake-up must not consume more than 2.5 mA of current. If the
application requires more current in suspend state an external power
source should be used.

Even if the device initiates resume signaling the host might not wake-up if
the particular device class (or underlying host driver) does not support the
remote wake-up feature. Similarly, the host’s power management (or
BIOS) configuration might dictate that it should ignore device-initiated
USB wake-up events.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

127
BSP_USB_STOP

Prototype
BSP_STATUS BSP_USB_Stop(void);

Parameters
None

Return Value
BSP_ERR_SUCCESS is returned if no errors occur.

BSP_ERR_IN_USE is returned if any endpoint is actively performing data
transfer.

Description
If all endpoints are idle this API can be used to return the USB controller
to a quiescent state. If this routine is successful, all BSP resources
acquired by the BSP_USB_Init API are released and the BSP_USB struc-
ture can be modified to initiate a different USB configuration by calling
BSP_USB_Init.

If an IN endpoint is actively sending data to the host this API will return
BSP_ERR_IN_USE. This error code is also returned for an OUT endpoint
that is waiting for data received from the host. If there are in-use end-
points the application should call BSP_USB_EpAbort API prior to calling
BSP_USB_Stop.

Correct Usage
None.
RM006404-0215 BSP_USB_Stop

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

128
BSP_USB_EPABORT

Prototype
BSP_STATUS BSP_USB_EpAbort(BSP_EP Ep);

Parameters

Return Value
BSP_ERR_SUCCESS is returned if no errors occur.

BSP_ERR_INVALID_PARAM is returned (with the debug version of the
BSP library) if an application specifies an endpoint number larger than
MAX_USB_EP or tries to abort an endpoint before calling BSP_USB_Init.

Description
This API is used to release one or more endpoints that are no longer
required for data transfer. Unlike the BSP_USB_EpStop API which only
releases idle endpoints, the BSP_USB_EpAbort API will release the end-
point(s) back to the system even if they are actively transferring data.
After the endpoint(s) are released they can be reconfigured and reacquired
via the BSP_USB_EpInit API.

Correct Usage
None.

Ep Specifies the endpoint being released. Valid values of Ep
range from BSP_EP0_IN to MAX_USB_EP. Specifying a
value of MAX_USB_EP causes all endpoints to be aborted.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

129
BSP_USB_EPINIT

Prototype
BSP_STATUS BSP_USB_EpInit
(
 BSP_EP Ep,
 EP_BUF_SIZE BufSize,
 FP_EP_DONE fpXferDone
);

Parameters

Return Value
BSP_ERR_SUCCESS is returned if no errors occur.

BSP_ERR_IN_USE is returned if the target endpoint has already been ini-
tialized.

BSP_ERR_INVALID_PARAM is returned (with the debug version of the
BSP library) if an application specifies an endpoint number larger than
BSP_EP3_OUT or tries to initialize an endpoint before calling
BSP_USB_Init, or specifies a buffer size larger than EP_BUF_SIZE_64.

Ep Specifies the endpoint to be initialized. Valid values of
Ep range from BSP_EP0_IN to BSP_EP3_OUT.

BufSize Specifies the size of the largest packet transferred with
the host. Must be one of the following values:
EP_BUF_SIZE_8, EP_BUF_SIZE_16,
EP_BUF_SIZE_24, EP_BUF_SIZE_32, or
EP_BUF_SIZE_64.

fpXferDone Application provided callback function that the USB
driver calls when an IN or OUT data transfer operation
completes (only used in IRQ and DMA modes for IN
endpoints).
RM006404-0215 BSP_USB_EpInit

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

130
Description
The BSP_USB_EpInit API is used to configure and initialize an end-
point for data transfer. Typically, applications call this API from within
their configuration callback routine for each endpoint in the selected con-
figuration. The configuration callback routine is specified in the fpUser-
Config member of the BSP_USB structure specified in the call to
BSP_USB_Init.

The endpoint data transfer direction is determined by the value of the Ep
parameter. IN endpoints are used to send data from the device to the host.
OUT endpoints are used to transfer data from the host to the device.

BSP_EP0_OUT is reserved for processing USB requests (both standard
and class/vendor specific requests). BSP_EP0_IN is not used by the BSP
USB library but is reserved for processing class/vendor requests. End-
point 0 IN and OUT form the default control pipe which the BSP USB
driver always enables for processing host requests. The majority of these
requests occur during enumeration, but the host may issue USB (device/
class/vendor) requests at any time. Therefore, when an application calls
this API targeting either BSP_EP0_IN or BSP_EP0_OUT the USB driver
only modifies the address of the endpoint’s data transfer complete call-
back.

The BufSize parameter is used to configure the maximum packet size
for data sent to the host (for IN endpoints) and the expected packet size
for data received from the host. The value used should correspond to the
buffer size specified in the endpoint’s descriptor (see the BSP_USB struc-
ture on page 214 to learn more). The value of the BufSize parameter is
ignored for BSP_EP0_IN and BSP_EP0_OUT; which always use a buffer
size of 64 bytes.

When the BSP USB driver is configured to use polling for endpoint data
transfer, the BSP USB driver does not issue a transmit callback even if the
application specifies a nonzero value for the pXferDone parameter (i.e.,
the transmission is synchronous). Consequently, the fpXferDone param-
eter should be set to 0 for IN endpoints. In Poll Mode, OUT endpoints
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

131
should specify a valid fpXferDone callback routine, because the
BSP_USB_PollEvents API will issue callbacks for data received from
the host.

Correct Usage
None.
RM006404-0215 BSP_USB_EpInit

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

132
BSP_USB_EPSTOP

Prototype
BSP_STATUS BSP_USB_EpStop(BSP_EP Ep);

Parameters

Return Value
BSP_ERR_SUCCESS is returned if no errors occur.

BSP_ERR_BUSY is returned if the target endpoint is actively transferring
data (IN endpoint) or has posted a receive buffer (OUT endpoint) for the
host to fill.

BSP_ERR_INVALID_PARAM is returned (with the debug version of the
BSP library) if an application specifies an endpoint number larger than
BSP_EP3_OUT or tries to stop an endpoint before calling
BSP_USB_Init.

Description
This API is used to release an idle endpoint that is no longer required for
data transfer. However, an error is returned if the endpoint is actively
transferring data. After the endpoint is released, it can be reconfigured
and reacquired via the BSP_USB_EpInit API.

Endpoints BSP_EP0_OUT and BSP_EP0_IN are used for the default con-
trol pipe. As such the BSP USB driver does not actually disable those
endpoints when targeted by this API and the BSP driver will continue to
process USB requests on EP 0. When this API is called for either
BSP_EP0_OUT or BSP_EP0_IN and the target endpoint is idle, the BSP

Ep Specifies the endpoint being released. Valid values of Ep
range from BSP_EP0_IN to BSP_EP3_OUT.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

133
driver only stops calling the fpXferDone callback passed to the
BSP_USB_EpInit API.

Correct Usage
None.
RM006404-0215 BSP_USB_EpStop

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

134
BSP_USB_EPTRANSMIT

Prototype
BSP_STATUS BSP_USB_EpTransmit
(
 BSP_EP Ep,
 HANDLE hBuf,
 BSP_SIZE Len
);

Parameters

Return Value
BSP_ERR_SUCCESS is returned if no errors occur.

BSP_ERR_BUSY is returned if the target endpoint is actively transferring
data (i.e., the target endpoint is currently sending data to the host).

BSP_ERR_INVALID_PARAM is returned (with the debug version of the
BSP library) if an application specifies an endpoint number larger than
BSP_EP3_IN or tries to transmit data on an uninitialized endpoint.

BSP_ERR_INVALID_STATE is returned if an attempt is made to transmit
on a suspended endpoint.

Description
This API is used to post a transmit buffer to the BSP USB driver. The
USB driver copies the transmit data from the application buffer (refer-
enced by hBuf) into endpoint buffer RAM within the USB controller.

Ep Specifies which IN endpoint to use for sending data to the
host. Must be one of BSP_EP0_IN to BSP_EP3_IN.

hBuf References a buffer containing the data to be sent to the
host.

Len Specifies the length of the data buffer referenced by hBuf.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

135
Because the BSP USB driver only provides device support, the data is not
actually transmitted to the host until the host issues an IN token. After the
host issues an IN token to the endpoint targeted by the Ep parameter, the
USB controller will transmit the application data to the host. After all the
data has been transferred, the BSP USB driver will call the fpXferDone
callback routine specified in the call to BSP_USB_EpInit (only if USB is
configured to use DMA or interrupts for endpoint data transfer and the
fpXferDone parameter is non-zero).

When the USB controller is configured to use DMA or interrupts for end-
point data transfer, a return code of BSP_ERR_SUCCESS does not mean
that the data has been transmitted to the host. It only means that the BSP
USB driver has accepted the application data for transmission. Between
the time this API returns BSP_ERR_SUCCESS and until the data is actu-
ally transmitted (and the optional fpXferDone callback is called), subse-
quent calls to this API will return a status of BSP_ERR_BUSY.

When the USB controller is configured to use polling for endpoint data
transfer, this routine does not return until the data is successfully transmit-
ted to the host or some other error occurs. In this instance, a return code of
BSP_ERR_SUCCESS does indicate that the data has successfully been sent
to the host. Since data is transmitted synchronously in poll mode, the BSP
USB driver does not call the fpXferDone callback when the transfer
completes.

The application data buffer can be of any size; it is not constrained by the
size of the BufSize parameter passed to the BSP_USB_EpInit API. If
the buffer passed to this routine is larger than the BufSize parameter
passed to BSP_USB_EpInit, then this routine will internally subdivide
the application buffer into packets of up to BufSize bytes. The last
packet will contain between 1 and (BufSize -1) bytes if the Len parame-
ter is not an integer multiple of BufSize. The (nonzero) fpXferDone
callback function will only be called after the entire application buffer has
been transmitted regardless of the size of hBuf.
RM006404-0215 BSP_USB_EpStop

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

136
Correct Usage
When using interrupt and/or DMA for endpoint data transfer applications
should not modify the contents of hBuf until the transmit operation com-
pletes. Consequently, hBuf should only be modified after the endpoint's
fpXferDone callback function is called.

When transmitting a ZLP in Interrupt Mode or DMA Mode, the
EP_SEND_ZLP bit in the Status member of the EP_CB_INFO structure
passed to the fpXferDone callback will be set to 1 if the BSP USB driver
did not attempt to send a ZLP to the host. This occurs if the host begins a
new control transfer before the application is able to request transmission
of a ZLP in the previous transfer. When polling is used for data transfers,
this routine does not return until the ZLP is transmitted (bulk and control
endpoints) or is aborted (only applicable to control endpoints).
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

137
BSP_USB_EPRECEIVE

Prototype
BSP_STATUS BSP_USB_EpReceive
(
 BSP_EP Ep,
 HANDLE hBuf,
 BSP_SIZE Len
);

Parameters

Return Value
BSP_ERR_SUCCESS is returned if no errors occur.

BSP_ERR_BUSY is returned if the target endpoint is actively transferring
data (i.e., a receive buffer has already been posted for the target endpoint).

BSP_ERR_INVALID_PARAM is returned (with the debug version of the
BSP library) if an application specifies an endpoint number smaller than
BSP_EP0_OUT, larger than BSP_EP3_OUT, tries to transmit data on an
uninitialized endpoint or specifies a Len parameter of 0.

BSP_ERR_INVALID_STATE is returned if an attempt is made to receive
data on a suspended endpoint.

Ep Specifies which OUT endpoint to use for receiving data
from the host. Must be one of BSP_EP0_OUT to
BSP_EP3_OUT.

hBuf References an application buffer into which data from the
host will be placed.

Len Specifies the length of the data buffer referenced by hBuf.
RM006404-0215 BSP_USB_EpReceive

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

138
Description
This API is used to post a receive buffer (referenced by hBuf) to the BSP
USB driver. After the host issues an OUT transaction to the endpoint tar-
geted by the Ep parameter, the data from the host is copied into the
receive buffer and the (optional) fpEpXfer done callback routine (a
parameter to the BSP_USB_EpInit API) is called.

A return code of BSP_ERR_SUCCESS does not mean that there is data
available in hBuf; it only indicates that the BSP USB driver has accepted
the receive buffer and that the endpoint has been enabled for data recep-
tion. Between the time this API returns BSP_ERR_SUCCESS and until the
data is actually received (and the optional fpXferDone callback is
called), subsequent calls to this API will return a status of
BSP_ERR_BUSY.

The application receive buffer can be of any size; it is not constrained by
the size of the BufSize parameter passed to the BSP_USB_EpInit API.
The Len parameter determines the maximum amount of data that can be
received from the host in a single transfer (that can span several USB
transactions) while the BufSize parameter passed to the
BSP_USB_EpInit API determines the maximum packet size expected
within a single USB transaction. As long as OUT transactions contain a
full sized data packet (equal to BufSize bytes), the host is sending data
within the same transfer. The host transmits a packet of less than Buf-
Size bytes to mark the end of the current transfer.

Regardless of whether the host has finished the current OUT transfer the
fpXferDone API is called when the receive buffer is full. The fpXfer-
Done routine is also called when the host finishes the OUT transfer (as
determined by the reception of a packet of length < BufSize).

Between the time the fpXferDone API is called and the time when the
application calls this routine to post another receive buffer, the USB con-
troller can buffer up to BufSize bytes of data for the endpoint. Subse-
quent OUT transactions will be NAKed by the USB controller until the
application calls this API.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

139
Correct Usage
None.
RM006404-0215 BSP_USB_EpReceive

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

140
Appendix A. Data Structures
This appendix describes the data structures (C structures, unions, and enu-
merations) that apply to the BSP API.

• AES Structures and Unions in the BSP API – see page 141

• CLKS Data Structure in the BSP API – see page 148

• DAC Structures and Unions in the BSP API – see page 152

• DMA Data Structures in the BSP API – see page 162

• GPIO Data Structures in the BSP API – see page 165

• I2C Structures and Unions in the BSP API – see page 168

• I2C Callback Functions in the BSP API – see page 181

• SPI Data Structures in the BSP API – see page 183

• UART Data Structures in the BSP API – see page 190

• USB Data Structures in the BSP API – see page 211
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

141
AES Structures and Unions in the BSP API

This section presents the following data structures, which are used by the
BSP AES driver.

• BSP_AES – see page 142

• AES_CFG – see page 144

• AES_POLL_CFG – see page 145

• AES_IRQ_CFG – see page 146

• AES_DMA_CFG – see page 147
RM006404-0215 BSP_USB_EpReceive

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

142
BSP_AES

Definition
typedef struct BSP_AES_s
{UINT8 Mode;
 UINT8 Key[AES128_BLOCK_SIZE];
 UINT8 Decrypt;
 AES_CFG * pAesCfg;
}BSP_AES;
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

143
Members

Correct Usage
n/a

Mode The encryption mode; must be one of AES_MODE_ECB,
AES_MODE_OFB, AES_MODE_CBC, or AES_MODE_KEYD.

Key The 16-byte encryption or decryption key. The ECB
encryption mode uses separate keys for encryption and
decryption; the decryption key must be derived from the
encryption key using the AES_MODE_KEYD operation. The
same is true of CBC Encryption Mode, with the further
requirement that the encryption mode must be set to
AES_MODE_ECB when decrypting messages encrypted with
AES_MODE_CBC. In OFB Encryption Mode, the same key
is used for both encryption and decryption.

Decrypt Set to AES_ENCRYPT to encrypt a message or derive a
decryption key. Set to AES_DECRYPT to decrypt a message
(except when using OFB encryption mode).

pAesCfg A pointer to an AES_CFG union that configures the data
transfer mode (Poll, Irq, or Dma). In defining the BSP_AES
structure, define this pointer as being to an object which is
one of the types in the AES_CFG union, but cast it to
(AES_CFG *), as shown in the following code fragment:

BSP_AES AesConfig =
{
 AES_MODE_ECB,
 {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15},
 AES_ENCRYPT,
 (AES_CFG *) &IrqCfg
};
RM006404-0215 BSP_USB_EpReceive

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

144
AES_CFG

Definition
typedef union AES_CFG_u
{ AES_POLL_CFG Poll;
AES_IRQ_CFG Irq;
AES_DMA_CFG Dma;
} AES_CFG;

Members

Correct Usage
You must define a struct of one of these three types, then use a pointer to
that struct, cast to (AES_CFG *), in declaring a BSP_AES structure. Refer
to the structure defined in the BSP_AES section on page 142 to learn
more.

Poll A struct of type AES_POLL_CFG, if you want to use polling
for data transfers to and from the AES accelerator.

Irq A struct of type AES_IRQ_CFG, if you want to use
interrupt-driven data transfers.

Dma A struct of type AES_DMA_CFG, if you want to use DMA
for data transfers.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

145
AES_POLL_CFG

Definition
typedef struct AES_POLL_CFG__s
{ FP_AES_SETUP fpSetup;
} AES_POLL_CFG;

Members

Correct Usage
If fpSetup is not defined properly, runtime errors will result.

fpSetup A function pointer used in initializing the AES; must be set
to AES_PollSetup.
RM006404-0215 BSP_USB_EpReceive

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

146
AES_IRQ_CFG

Definition
typedef struct AES_IRQ_CFG_s
{ FP_AES_SETUP fpSetup;
FP_AES_DONE fpAesDone;
} AES_IRQ_CFG;

Members

Correct Usage
If fpSetup and fpAesDone are not defined properly, runtime errors will
result.

fpSetup A function pointer used in initializing the AES; must be set
to AES_IrqSetup.

fpAesDone A function pointer to a callback function, which will be
called when the AES transform is complete. This operation
is necessary because AES transfers are nonblocking in this
data transfer mode.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

147
AES_DMA_CFG

Definition
typedef struct AES_DMA_CFG_s
{ FP_AES_SETUP fpSetup;
FP_AES_DONE fpAesDone;
UINT16 InDMABase;
UINT16 OutDMABase;
} AES_DMA_CFG;

Members

Correct Usage
If fpSetup and fpAesDone are not defined properly; or if InDMABase
and OutDMABase are not defined properly, or are not different from each
other; or if the DMA channel corresponding to either InDMABase or Out-
DMABase is already in use by another peripheral, then runtime errors
will result.

fpSetup A function pointer used in initializing the AES; must be
set to AES_DmaSetup.

fpAesDone A function pointer to a callback function, which will be
called when the AES transform is complete. This
operation is necessary because AES transfers are
nonblocking in this data transfer mode.

InDMABase The DMA channel to be used for transferring data to the
AES accelerator. Must be one of: BSP_DMA0,
BSP_DMA1, BSP_DMA2, or BSP_DMA3.

OutDMABase The DMA channel to be used for extracting data from
the AES accelerator. Must be one of: BSP_DMA0,
BSP_DMA1, BSP_DMA2, or BSP_DMA3, and must be
different from InDMABase.
RM006404-0215 BSP_USB_EpReceive

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

148
CLKS Data Structure in the BSP API

This section presents the data structure ("C" structure, union and enumer-
ation) used by the BSP clock system driver.

• BSP_CLKS – see page 149
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

149
BSP_CLKS

Definition
typedef struct BSP_CLKS_s
{
 UINT8 SCK_Ctrl;
 UINT8 PCK_Ctrl;
 UINT8 HFXO_Ctrl;

 struct
 {
 UINT8 Ctrl;
 UINT8 RdivOdiv;
 UINT8 Ndiv;
 } PLL;

 struct
 {
 UINT8 Ctrl;
 UINT16 FLL_Div;
 UINT8 CWH;
 UINT8 CWL;
 } DCO;
} BSP_CLKS;
RM006404-0215 BSP_USB_EpReceive

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

150
Members
SCK_Ctrl Specifies the system clock control value to be written to the

CLKCTL0 Special Function Register. If the value of the
SCK_Ctrl structure member includes the CLKS_CSTAT
flag, access to the system clock registers will remain
unlocked after the BSP_CLKS_Config routine returns to
the caller. If the CLKS_CSTAT flag is not specified, then
access to the clock system registers will be locked. To learn
how to initialize the SCK_Ctrl structure member, see the
description of the CLKCTL0 Register in the Z8F6482
Series Product Specification.

PCK_Ctrl Specifies the peripheral clock (PCLK) control value to be
written to the CLKCTL1 Special Function Register. Be
sure to specify the CLKS_IPOEN if the internal precision
oscillator is selected as the PCLK source. Similarly, the
CLKS_LFXOEN flag should be used if the low-frequency
crystal oscillator is selected as the PCLK source. To learn
how to initialize the PCK_Ctrl structure member, see the
description of the CLKCTL1 Register in the Z8F6482
Series Product Specification.

HFXO_Ctrl Specifies the high frequency crystal oscillator (HFXO)
control value to be written to the CLKCTL2 Special
Function Register. If the HFXO is used as either the PLL or
system clock source, the value of the HFXO_Ctrl structure
member should include the CLKS_HFXOEN flag. To learn
how to initialize the HFXO_Ctrl structure member, see the
description of the CLKCTL2 Register in the Z8F6482
Series Product Specification.
Universal Serial Bus API Reference RM006404-0215

http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

151
Correct Usage
None.

PLL The PLL member of the BSP_CLKS structure is also a
structure that contains the parameters used to initialize the
phase locked loop clock (PLLClk). The PLL.Ctrl,
PLL.RdivOdiv, and PLL.Ndiv structure members are
written to the CLKCTLA, CLKCTLB, and CLKCTLC
special function registers. Typically, the PLL is configured
to produce a 48 MHz output clock used by the integrated
USB controller; the PLL can also be used as the system
clock. If the PLL is not being used, the PLL.Ctrl
structure member should be set to 0. To learn how to
configure the PLL, see the descriptions of the CLKCTLA,
CLKCTLB, and CLKCTLC registers in the Z8F6482
Series Product Specification.

DCO The DCO member of the BSP_CLKS structure is also a
structure that contains the parameters used to initialize the
digitally-controlled oscillator (DCO). The DCO.Ctrl,
DCO.FLL_Div, DCO.CWH, and DCO.CWL structure
members are written to the CLKCTL3 Register through the
CLKCTL7 special function registers. If used, the DCO can
be configured to free run off the high and low control
words (CWH and CWL) or can be locked to a multiple of
PCLK, as determined by the value of the frequency-locked
loop divider (FLL_Div). If the DCO is configured to free
run, then the CLKS_FLLEN flag is not required to be
specified in the value of the DCO.Ctrl structure member.
If the DCO is not used, set the value of the DCO.Ctrl
structure member to 0. To learn how to configure the DCO,
see the description of the CLKCTL3 Register in the
Z8F6482 Series Product Specification.
RM006404-0215 BSP_USB_EpReceive

http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

152
DAC Structures and Unions in the BSP API

This section presents the following data structures, which are used by the
BSP DAC driver.

• BSP_DAC – see page 153

• DAC_ BUF_OUTPUT_CFG – see page 157

• DAC_BUF_OUTPUT_IRQ – see page 158

• DAC_BUF_OUTPUT_DMA – see page 160
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

153
BSP_DAC

Definition
typedef struct BSP_DAC_s
{
 UINT8 dacCtrlReg;
 UINT8 inpDataTwoBytes;
 UINT16 initVal;
 DAC_BUF_OUTPUT_CFG * pBufOpCfg;
} BSP_DAC;
RM006404-0215 BSP_USB_EpReceive

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

154
Members
dacCtrlReg The DAC hardware is configured by copying this

value to the SFR DACCTL. Individual fields within
this byte control the power level at which the DAC
will operate; the DAC voltage reference; whether
input data are treated as signed or unsigned; whether
direct operation or Event System triggering is used
to drive conversions; and the left or right
justification of the data in the 2 8-bit DAC data
registers. The justification, in combination with
inpDataTwoBytes, in essence tells the DAC what
type of data you will be providing for conversion.
You should select right justification if your input
data are already constrained to a 12-bit range,
matching the output range of the DAC. Use left
justification if your input data will be 8 or 16 bits and
you want the DAC hardware to scale those values
into its output range.

inpDataTwoBytes If TRUE, the data presented to the DAC must be
two bytes per value, either 12 or 16 bits depending
on the justification. If FALSE, the input data must
be 8 bit values.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

155
Correct Usage
Application code is responsible for ensuring that the type (signed or
unsigned; 8, 12, or 16-bit data range) of all data which the DAC is asked
to convert does in fact match the hardware setup of the DAC that has been
specified in this structure. If not, the output levels of the DAC will not be
as expected.

Some of the possible DAC voltage reference selections set by dacCtrlReg
require external hardware, or impose requirements on the power supply
voltage, or interact with settings of the Analog to Digital Converter

initVal An initial value that will be written to the DAC
data registers before the DAC is enabled. When the
DAC is enabled by calling BSP_DAC_Init(),
conversion and output of this value will begin
immediately, and this value will remain in the
DAC output until you request output of either a
single value or a buffer. This value is a literal value
that will be written to the DAC data registers.
When the DAC is enabled, the value initVal will be
interpreted and converted in the way determined
by your setup of the DAC hardware via
dacCtrlReg. See the code comments in
BSP_DAC.h for detailed examples.

pBufOpCfg A pointer to a DAC_BUF_OUTPUT_CFG union that
configures the data transfer mode (Irq or Dma).
This pointer applies only to the case, in which a
buffer of data values is to be output, driven by the
Event System. For direct operation of the DAC, set
this pointer to NULLPTR. For Event System
operation, define it as a pointer to an object which
is one of the types in the DAC_BUF_OUTPUT_CFG
union, but cast it to DAC_BUF_OUTPUT_CFG *.
See the DAC sample programs for examples.
RM006404-0215 BSP_USB_EpReceive

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

156
(ADC). It is your responsibility to ensure that the software configuration
defined by dacCtrlReg is consistent with your hardware.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

157
DAC_ BUF_OUTPUT_CFG

Definition
typedef union DAC_ BUF_OUTPUT_CFG_u
{ DAC_BUF_OUTPUT_IRQ Irq;
DAC_BUF_OUTPUT_DMA Dma;
} DAC_ BUF_OUTPUT_CFG;

Members

Correct Usage
You must define a struct of one of these 2 types, then use a pointer to that
struct, cast to (DAC_ BUF_OUTPUT_CFG *), in declaring a BSP_DAC
structure if your intended operation is to output a buffer to the DAC. See
the DAC sample programs for examples.

Irq A struct of type DAC_BUF_OUTPUT_IRQ, if you want to
use interrupt-driven data transfers to output a buffer to the
DAC.

Dma A struct of type DAC_ BUF_OUTPUT_DMA, if you want to
use DMA for data transfers to output a buffer to the DAC.
RM006404-0215 BSP_USB_EpReceive

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

158
DAC_BUF_OUTPUT_IRQ

Definition
typedef struct DAC_ BUF_OUTPUT_IRQ_s
{ FP_DAC_SETUP fpSetup;
FP_DAC_DONE fpDacDone;
UINT8 stopInstantly;
} DAC_ BUF_OUTPUT_IRQ;

Members

If stopInstantly is TRUE, fpDacDone will be called as soon as the
data transfer to the DAC data registers is complete.

fpSetup A function pointer used in initializing the DAC; must
be set to DAC_IrqOutputBufSetup.

fpDacDone A function pointer to a callback function, which will
be called when all data transfers to the DAC are
complete. This operation is necessary because
transfers of data buffers to the DAC are nonblocking,
being under the control of the Event System.

stopInstantly If FALSE, the completion callback function
fpDacDone will not be called until the final value in
the input buffer has been driven on the DAC output
pin for the normal convert-and-hold time. You may
prefer this option if your use of the DAC will end, at
least for the near term, after the current buffer has
been output (possibly repeatedly). The goal in this
case is to make the DAC output hardware treat the
final value in the input buffer consistently with all the
other buffer elements.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

159
At this point, the final value transferred to the DAC has not yet begun to be
driven on the DAC output, because on every Event System signal, the
DAC drives the previous contents of the data registers on its output, then
requests a new data value from the interrupt service or DMA.

The stopInstantly = TRUE option is provided for the use of applica-
tion code when the goal is to transition as fast as possible from output of
one buffer to another, for example if streaming data continuously to the
DAC from external hardware. Making a smooth transition from one buf-
fer output to another and managing the DAC output timing for such appli-
cations is the responsibility of the application code.

Correct Usage
If fpSetup and fpDacDone are not defined properly, runtime errors will
result.

Note:
RM006404-0215 BSP_USB_EpReceive

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

160
DAC_BUF_OUTPUT_DMA

Definition
typedef struct DAC_ BUF_OUTPUT_DMA_s
{ FP_DAC_SETUP fpSetup;
FP_DAC_DONE fpDacDone;
UINT8 stopInstantly;
UINT16 dmaBase;
} DAC_ BUF_OUTPUT_DMA;

Members

If stopInstantly is TRUE, fpDacDone will be called as soon as the
data transfer to the DAC data registers is complete.

fpSetup A function pointer used in initializing the DAC; must
be set to DAC_DmaOutputBufSetup.

fpDacDone A function pointer to a callback function, which will
be called when all data transfers to the DAC are
complete. This operation is necessary because
transfers of data buffers to the DAC are nonblocking,
being under the control of the Event System.

stopInstantly If FALSE, the completion callback function
fpDacDone will not be called until the final value in
the input buffer has been driven on the DAC output
pin for the normal convert-and-hold time. You may
prefer this option if your use of the DAC will end, at
least for the near term, after the current buffer has
been output (possibly repeatedly). The goal in this
case is to make the DAC output hardware treat the
final value in the input buffer consistently with all the
other buffer elements.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

161
At this point, the final value transferred to the DAC has not yet begun to be
driven on the DAC output, because on every Event System signal, the DAC
drives the previous contents of the data registers on its output, then requests a
new data value from the interrupt service or DMA.

The stopInstantly = TRUE option is provided for the use of applica-
tion code when the goal is to transition as fast as possible from output of
one buffer to another, for example if streaming data continuously to the
DAC from external hardware. Making a smooth transition from one buf-
fer output to another and managing the DAC output timing for such appli-
cations is the responsibility of the application code.

Correct Usage
If fpSetup, fpDACDone, and dmaBase are not defined properly; or if the
DMA channel corresponding to dmaBase is already in use by another
peripheral, then runtime errors will result.

dmaBase The DMA channel to be used for transferring data to the
DAC; it must be one of: BSP_DMA0, BSP_DMA1,
BSP_DMA2, or BSP_DMA3.

Note:
RM006404-0215 BSP_USB_EpReceive

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

162
DMA Data Structures in the BSP API

This section presents the following data structure, which is used by the
BSP DMA driver.

• DMA_DESC – see page 163
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

163
DMA_DESC

Definition
typedef struct DMA_DESC_s
{
 UINT16 Src;
 UINT16 Dst;
 UINT16 Cnt;
 UINT8 Ctl0;
 UINT8 Ctl1;
} DMA_DESC;
RM006404-0215 BSP_USB_EpReceive

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

164
Members

Correct Usage
Linked list DMA transfers require the application to provide an array of
descriptors that configure the DMA channel’s special function registers to
perform a transfer composed of one or more stages. Each descriptor in the
array must be of type DMA_DESC. Applications are responsible for ensur-
ing that the array of descriptors is located at an address in RAM that is
evenly divisible by 8 (i.e., the descriptor array must be 8-byte aligned).

Src Address of the (RAM) memory buffer containing the data
to be transferred or the Special Function Register (SFR)
address of a peripheral device from which data is to be
extracted.

Dst Address of the (RAM) memory buffer into which data is
transferred or the Special Function Register (SFR) address
of a peripheral device to which data is to be transferred.

Cnt Specifies the number of bytes of data to be transferred.
Ctl0 Specifies the value to be written to the DMA channel's

DMAxCTL0 Special Function Register. To learn more
about the meaning of this value, refer to the Z8F6482
Series Product Specification.

Ctl1 Specifies the value to be written to the DMA channel's
DMAxCTL1 Special Function Register. To learn more
about the meaning of this value, refer to the Z8F6482
Series Product Specification.
Universal Serial Bus API Reference RM006404-0215

http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

165
GPIO Data Structures in the BSP API

This section presents the following data structure, which is used by the
GPIO module.

BSP_GPIO_CFG – see page 166
RM006404-0215 BSP_USB_EpReceive

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

166
BSP_GPIO_CFG

Definition
typedef struct BSP_GPIO_CFG_s
{
 IOReg8 Port;
 UINT8 AF_Mask;
 UINT8 AFS1_Mask;
 UINT8 AFS2_Mask;
} BSP_GPIO_CFG;
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

167
Members

Correct Usage
None.

Port Specifies the GPIO port whose pins are being configured
for alternate function mode. The value of the Port structure
member must be between BSP_GPIO_PORT_A to
BSP_GPIO_PORT_J (excluding BSP_GPIO_PORT_I
which is not defined for the Z8F6482 Series).

AF_Mask The alternate function mask identifies the set of pins within
the port being configured for the same alternate
subfunction mode. This value can be expressed as an 8-bit
number (e.g., 0x30) or constructed using macros from the
BSP.h header file (e.g., BIT5 | BIT4) or the
Z8F6482_GPIO_SFR.h header fie (e.g., GPIOA_TXD0 |
GPIOA_RXD0).

AFS1_Mask Specifies whether the AFS1 subfunction selection bit(s)
should be set or cleared for the specified set of GPIO
pin(s). If the value of the AFS1_Mask structure member is
0, then the bit(s) corresponding to the AF_Mask structure
member in the GPIO AFS1 subregister are cleared to 0. If
the value of the AFS1_Mask structure member is nonzero,
then the bit(s) corresponding to the AF_Mask structure
member in the GPIO AFS1 subregister are set to 1.

AFS2_Mask Specifies whether the AFS2 subfunction selection bit(s)
should be set or cleared for the specified set of GPIO
pin(s). If the value of the AFS2_Mask structure member is
0, then the bit(s) corresponding to the AF_Mask structure
member in the GPIO AFS2 subregister are cleared to 0. If
the value of the AFS2_Mask structure member is nonzero,
then the bit(s) corresponding to the AF_Mask structure
member in the GPIO AFS2 subregister are set to 1.
RM006404-0215 BSP_USB_EpReceive

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

168
I2C Structures and Unions in the BSP API

This section presents the following data structures, which are used by the
BSP I2C driver.

• BSP_I2C – see page 169

• I2C_CFG – see page 170

• I2C_COMMON_CFG – see page 171

• I2C_MASTER_POLLING – see page 172

• I2C_MASTER_IRQ – see page 173

• I2C_MASTER_DMA – see page 174

• I2C_SLAVE_POLLING – see page 175

• I2C_SLAVE_IRQ – see page 176

• I2C_SLAVE_DMA – see page 177

• I2C_Status – see page 178

• I2C_State – see page 180
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

169
BSP_I2C

Definition
typedef struct BSP_I2C_s
{
 FP_I2C_DONE fpXferDone;
 I2C_CFG* pCfg;
} BSP_I2C;

Members
fpXferDone The callback function called at the end of each I2C

transfer.
pCfg Pointer to an I2C_CFG containing configuration

information.
RM006404-0215 BSP_I2C

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

170
I2C_CFG

Definition
typedef union I2C_CFG_u
{
 I2C_COMMON_CFG common;
 I2C_MASTER_POLLING master_poll;
 I2C_MASTER_IRQ master_irq;
 I2C_MASTER_DMA master_dma;
 I2C_SLAVE_POLLING slave_poll;
 I2C_SLAVE_IRQ slave_irq;
 I2C_SLAVE_DMA slave_dma;
} I2C_CFG

Members
See the descriptions of the individual structures in this union to learn
more.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

171
I2C_COMMON_CFG

Definition
typedef struct I2C_COMMON_CFG_s
{
 FP_I2C_SETUP fpSetup;
 UINT16 Brg;
 rom BSP_GPIO_CFG *pI2cCfg;
}I2C_COMMON_CFG;

 Members

Description
I2C_COMMON_CFG is a common front end to all the other members of
union I2C_CFG.

fpSetup A function pointer used in initializing the I2C. Each of the
other members of the I2C_CFG union has a specific value
this must be set to.

Brg The value to place in the I2CBR Register to set the
baudrate. Use the I2C_Brg macro to compute this.

pI2CCfg A pointer to an array in ROM to initialize the I2C ports.
The following arrays are provided in the BSP library:
I2C_Pins_A6_A7: A6 is the SCL and A7 is SDA.
I2C_Pins_A6_C5: A6 is the SCL and C5 is SDA.
I2C_Pins_C4_A7: C4 is the SCL and A7 is SDA.
I2C_Pins_C4_C5: 4 is the SCL and C5 is SDA.
RM006404-0215 I2C_COMMON_CFG

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

172
I2C_MASTER_POLLING

Definition
typedef struct I2C_MASTER_POLLING_s
{
 FP_I2C_SETUP fpSetup;
 UINT16 Brg;
 rom BSP_GPIO_CFG *pI2cCfg;
} I2C_MASTER_POLLING;

See the I2C_COMMON_CFG structure on page 171 for the definition of
these members. fpSetup must be set to
I2C_Setup_Master_Polling.

Correct Usage
Use this structure to configure I2C to act as a master in Poll Mode.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

173
I2C_MASTER_IRQ

Definition
typedef struct I2C_MASTER_IRQ_s
{
 FP_I2C_SETUP fpSetup;
 UINT16 Brg;
 rom BSP_GPIO_CFG *pI2cCfg;
} I2C_MASTER_IRQ;

See the I2C_COMMON_CFG structure on page 171 for the definition of
these members. fpSetup must be set to I2C_Setup_Master_Irq.

Correct Usage
Use this structure to configure I2C to act as a master in Interrupt Mode.
RM006404-0215 I2C_MASTER_IRQ

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

174
I2C_MASTER_DMA

Definition
typedef struct I2C_MASTER_DMA_s
{
 FP_I2C_SETUP fpSetup;
 UINT16 Brg;
 rom BSP_GPIO_CFG *pI2cCfg;
 UINT16 DmaBase;
} I2C_MASTER_DMA;

Members
See the I2C_COMMON_CFG structure on page 171 for the definition of
the first three members. fpSetup must be set to
I2C_Setup_Master_Dma.

Correct Usage
Use this structure to configure I2C to act as a master in Interrupt Mode
with transfers other than the address part of a message handled by DMA.

DmaBase The special function register to use as the base for DMA
operations.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

175
I2C_SLAVE_POLLING

Definition
typedef struct I2C_SLAVE_POLLING_s
{
 FP_I2C_SETUP fpSetup;
 UINT16 Brg;
 rom BSP_GPIO_CFG *pI2cCfg;
 UINT16 address;
 UINT8 tenBitAddress;
} I2C_SLAVE_POLLING;

Members
See the I2C_COMMON_CFG structure on page 171 for the definition of
the first three members. fpSetup must be set to
I2C_Setup_Slave_Polling.

Correct Usage
Use this structure to configure I2C to act as a slave in Poll Mode.

address The slave address of the device.
tenBitAddress Nonzero if the device will have a 10-bit I2C

address.
RM006404-0215 I2C_SLAVE_POLLING

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

176
I2C_SLAVE_IRQ

Definition
typedef struct I2C_SLAVE_IRQ_s
{
 FP_I2C_SETUP fpSetup;
 UINT16 Brg;
 rom BSP_GPIO_CFG *pI2cCfg;
 UINT16 address;
 UINT8 tenBitAddress;
} I2C_SLAVE_IRQ;

Members
See the I2C_COMMON_CFG structure on page 171 for the definition of
the first three members. fpSetup must be set to
I2C_Setup_Slave_Irq.

Correct Usage
Use this structure to configure I2C to act as a slave in Interrupt Mode.

address The slave address of the device.
tenBitAddress Nonzero if the device will have a ten bit I2C

address.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

177
I2C_SLAVE_DMA

Definition
typedef struct I2C_SLAVE_DMA_s
{
 FP_I2C_SETUP fpSetup;
 UINT16 Brg;
 rom BSP_GPIO_CFG *pI2cCfg;
 UINT16 address;
 UINT8 tenBitAddress;
 UINT16 DmaBase;
} I2C_SLAVE_DMA;

Members
See the I2C_COMMON_CFG structure on page 171 for the definition of
the first three members. fpSetup must be set to
I2C_Setup_Master_Dma.

Correct Usage
Use this structure to configure I2C to act as a slave in Interrupt Mode with
data transfers handled by DMA.

address The slave address of the device.
tenBitAddress Nonzero if the device will have a ten bit I2C

address.
DmaBase The special function register to use as the base for

DMA operations.
RM006404-0215 I2C_SLAVE_DMA

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

178
I2C_STATUS

Definition
typedef unsigned char enum I2C_Status
{
 I2C_SUCCESS,
 I2C_ERR_NCKI,
 I2C_ERR_NO_SUCH_SLAVE,
 I2C_ERR_SHORT_MESSAGE,
 I2C_ERR_OVERFLOW,
 I2C_ERR_ARBLST,
} I2C_STATUS;

Correct Usage
An I2C_Status is passed to the fpXferDone callback function to indicate
the ultimate result of the requested operation.

Members
I2C_SUCCESS The transfer was a success.
I2C_ERR_NCKI The transmission was aborted because of a

nonacknowledgment by the recipient on other than
the last character to be transmitted. This member
normally means that the recipient’s buffer was full,
but could result from a hardware failure.

I2C_ERR_NO_SUCH
_SLAVE

The message was not sent because no slave
responded to the address given.

I2C_ERR_SHORT_
MESSAGE

Less than the full length of the message was sent or
received for reasons other than I2C_ERR_NCKI.
Depending on the protocol implemented between
master and slave, this could simply because the
buffer passed was large enough to accommodate
any message, or it could indicate some sort of
error.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

179
I2C_ERR_
OVERFLOW

More than the specified number of bytes were sent
or received. (This issue should never occur.)

I2C_ERR_ARBLST The message was aborted because of a loss of
arbitration on the I2C bus.
RM006404-0215 I2C_Status

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

180
I2C_STATE

Definition
typedef unsigned char enum I2C_State
{
 I2CIdle,
 I2CReceive,
 I2CTransmit,
} I2C_STATE;

Correct Usage
An I2C_State is passed to the fpXferDone callback function to indicate
whether the message completed was a transfer or a receive.

Members
I2CIdle This value is never actually passed to the callback

function. Within the I2C code, it indicates that the
system is idle.

I2CReceive The message was a receive.
I2CTransmit The message was a transmit.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

181
I2C Callback Functions in the BSP API

This section presents the following I2C callback function, which is used
by the BSP API.

• FP_I2C_DONE (fpXferDone) – see page 182
RM006404-0215 I2C_State

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

182
FP_I2C_DONE (FPXFERDONE)

Definition
typedef void (* FP_I2C_DONE)(I2C_STATE state,
 I2C_STATUS status,
 HANDLE message,
 BSP_SIZE len);

FP_I2C_DONE fpXferDone; // (Member of BSP_I2C structure)

Parameters

The fpXferDone callback function is called at the end of each I2C trans-
fer to indicate the ultimate result of the request. Unless you are using poll-
ing for I2C, this function is called out of an interrupt routine, and should
normally save the data and return.

state An I2C_STATE indicating whether the operation was a
transmit or a receive.

status An I2C_STATUS indicating whether the operation was a
success.

message The buffer originally passed to one of the I2C transfer
functions.

len The length in bytes of the message transmitted or received.

Note:
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

183
SPI Data Structures in the BSP API

This section presents the following data structure, which is used by the
BSP SPI driver.

• BSP_SPI – see page 184
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

184
BSP_SPI

Definition
typedef struct BSP_SPI_s
{
 UINT8 Ctrl;
 UINT8 Mode;
 UINT16 Brg;

 rom BSP_GPIO_CFG * pGpioCfg;

 FP_SPI_SETUP fpSetup;
 FP_SPI_DONE fpXferDone;

 UINT16 TxDmaBase;
 UINT16 RxDmaBase;

 UINT8 NullTxChar;

 UINT8 I2S_WordSize;

 BOOL Use_nSS;
} BSP_SPI;
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

185
Members

rom BSP_GPIO_CFG Spi0GpioCfg[2] =
{
 {
 BSP_GPIO_PORT_C,
 (GPIOC_SCK0 | GPIOC_MOSI0 |GPIOC_MISO0 | GPIOC_nSS0),
 0, 0
 },
 {0,0,0,0}
};

Ctrl During initialization the value of the Ctrl structure member
is written to the ESPICTL Register*. The SPI driver
ignores the value of the DIRQS specified in the Ctrl byte.

Mode During initialization the value of the Mode structure
member is written to the ESPIMODE Register*.

Brg During initialization the value of the Brg structure member
is written to the ESPIBRH and ESPIBRL registers*.

pGpioCfg References a BSP_GPIO_CFG structure that specifies the
GPIO port pin configuration applicable to the target SPI
controller. The structure referenced by the pGpioCfg
pointer should be located in Flash (the compiler’s ROM
memory space). For example, the default GPIO port pin
configuration for SPI0 on the Z8F6482 controller is shown
in the following code snippet:

Note: *For a description of these registers, refer to the Z8F6482 Series Product Specifica-
tion.
RM006404-0215 FP_I2C_DONE (fpXferDone)

http://www.zilog.com/docs/ps0294.pdf
http://www.zilog.com/docs/ps0294.pdf

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

186
To learn more, refer to the BSP_GPIO API reference.
fpSetup A function pointer that references the hardware

specific initialization routine that determines the data
transfer method to be used (Poll Mode, Interrupt
Mode or DMA Mode) when the BSP_SPI_Xfer
routine is called. The BSP library includes the
following default setup routines that can be used to
initialize the fpSetup member of the BSP_SPI
structure:
SPI_PollSetup // For Poll mode on

// SPI0 or SPI1
SPI0_IrqSetup // For Interrupt mode

// on SPI0
SPI0_DmaSetup // For DMA Mode on SPI0
SPI1_IrqSetup // For Interrupt mode

// on SPI1
SPI1_DmaSetup // For DMA Mode on SPI1
I2S_PollSetup // For I2S-Poll mode on

// SPI0 or SPI1
I2S0_IrqSetup // For I2S-Interrupt

// mode on SPI0
I2S1_IrqSetup // For I2S-Interrupt

// mode on SPI1

fpXferDone Optional application callback that the SPI driver calls
when a data transfer operation completes (or aborts).
After a successful call to the BSP_SPI_Xfer API,
the SPI driver will return a status of BSP_ERR_BUSY
if the BSP_SPI_Xfer API is called again before the
driver calls the application’s fpXferDone callback.
Only one callback is made to the fpXferDone
callback regardless of whether the application has
requested a half-duplex or full-duplex transfer.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

187
TxDmaBase if the fpSetup member of the BSP_SPI structure
references the SPI0_DmaSetup routine or the
SPI1_DmaSetup routine and the application must
perform transmit operations, then the TxDmaBase
structure member should be set to the BSP address of
the DMA channel reserved for SPI0/SPI1 data
transmission. In all other instances, the TxDmaBase
structure member should be set to 0. The only valid
nonzero values for this structure member are
BSP_DMA0 to BSP_DMA3.

RxDmaBase if the fpSetup member of the BSP_SPI structure
references the SPI0_DmaSetup routine or the
SPI1_DmaSetup routine and the application must
perform receive operations, then the RxDmaBase
structure member should be set to the BSP address of
the DMA channel reserved for SPI0/SPI1 data
reception. In all other instances, the RxDmaBase
structure member should be set to 0. The only valid
nonzero values for this structure member are
BSP_DMA0 to BSP_DMA3.

NullTxChar When the SPI driver performs half-duplex receive
transfers, it can be configured to send an arbitrary
data value (the value of the NullTxChar structure
member) to the remote SPI device. To enable this
mode of operation the SPI_ESPIEN1 (i.e., transmit
enable) bit must be set in the Mode structure member
as well as the SPI_ESPIEN0 (i.e., receive enable) bit.
If the SPI_ESPIEN1 bit is set to 0 in the Mode
structure member, then transmission is disabled at the
hardware level. In this instance, the remote SPI
device receives a stream of 0xFF characters.
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

188
Correct Usage
Applications using the BSP SPI driver must declare a variable of type
BSP_SPI, initialize it with valid values and pass the address of the vari-
able to the BSP_SPI_Init API before attempting to call any other SPI
API.

When configuring the SPI driver to operate in I2S Mode, be aware of the
following limitations:

• DMA data transfer is not supported in I2S Mode. In I2S Mode, only
polling or interrupt driver data transfers can be used. Consequently,
there are no I2S DMA setup functions provided for the fpSetup
structure member.

• When operating as I2S master at high baud rates, software may not be
able to toggle the slave select signal fast enough causing extra output
bits in the data stream. If this occurs reduce the data rate via the Brg
structure member.

I2S_WordSize When the slave select mode (SSMD) field in the
Mode structure member is set to SPI_SSMD_I2S this
structure member specifies the number of bytes per
I2S datum. In I2S Master Mode, the SPI driver
toggles nSS after each I2S datum is transferred.

Use_nSS If nonzero, specifies that the SPI driver should assert
nSS during data transfers. This structure member
should be set to FALSE (0) when the SPI driver is
configured to operate in Slave or Multi-Master
modes. If the SPI driver is the only master on the bus,
then the application can set this structure member to
TRUE (1) if the BSP driver should control nSS or
FALSE (0) if the application controls nSS (or the
external GPIO pin(s) used to enable specific slaves).
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

189
• The I2S master toggles the SPI nSS signal between left and right data
words. Therefore, the BSP I2S master should be configured for Single
Master Mode (SSIO=1 in the mode structure member).
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

190
UART Data Structures in the BSP API

This section presents the following data structures, which are used by the
BSP UART driver.

BSP_UART – see page 191

UART_TX_CONFIG – see page 194

UART_TX_POLL – see page 196

UART_TX_IRQ – see page 197

UART_TX_DMA – see page 199

UART_RX_POLL – see page 201

UART_RX_IRQ – see page 202

UART_RX_DMA – see page 205
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

191
BSP_UART

Definition
typedef struct BSP_UART_s
{
 UINT8 Mode;
 UINT8 Ctl0;
 UINT8 Ctl1;
 UINT16 Brg;
 UINT8 Addr;

 rom BSP_GPIO_CFG * pGpioCfg;

 UART_TX_CFG * pTxCfg;
 UART_RX_CFG * pRxCfg;
} BSP_UART;
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

192
Members
Mode During initialization the value of the Mode structure

member is written to the UxMDSTAT Register*. The upper
3 bits of the Mode structure member are used to select the
UART protocol mode and must be set to one of the
following values: UART_MSEL_NORMAL_MP (for standard
UART or Multiprocessor Protocol Mode),
UART_MSEL_LIN (for LIN Protocol Mode) or
UART_MSEL_DMX (for DMX Protocol Mode). The BSP
UART driver does not support DALI Mode.

Ctl0 During initialization the value of the Ctl0 structure member
is written to the UxCTL0 Register*. This structure member
is used to enable hardware transmit flow control (CTSE),
parity enable (PEN), Parity Select (PSEL) and the number
of stop bits (STOP). The setting of all other U0CTL0
control bits are ignored (TEN, REN, SBRK, and LBEN).

CTL1 During initialization the value of the Ctl1 structure member
is written to the UxCTL1 Register*. The meaning of the
Ctl1 control byte is dependent upon the UART protocol
mode specified by the value of the Mode structure member.

Brg During initialization the value of the Brg structure member
is written to the UxBRH and UxBRL registers*.

Addr During initialization the value of the Addr structure
member is written to the UxADDR Register. This structure
member is only applicable to Multiprocessor (MP) and
DMX Protocol modes.

Note: *To learn more about these registers, refer to the F6482 Series Product Specification
(PS0294).
Universal Serial Bus API Reference RM006404-0215

http://www.zilog.com/docs/ps0294.pdf

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

193
Correct Usage
Applications using the BSP UART driver must declare a variable of type
BSP_UART, initialize it with valid values and pass the address of the vari-
able to the BSP_UART_Init API before attempting to call any other
UART API.

pGpioCfg References a BSP_GPIO_CFG structure that specifies the
GPIO port pin configuration applicable to the target UART
controller. The structure referenced by the pGpioCfg
pointer should be located in Flash (the compiler's ROM
memory space). To provide an example, the default GPIO
port pin configuration for UART0 on the Z8F6482
controller is shown in the following code snippet:
rom BSP_GPIO_CFG U0GpioCfg[2] =
{
 {BSP_GPIO_PORT_A, (GPIOA_TXD0 |
GPIOA_RXD0), 0, 0},
 {0,0,0,0}
};

pTxCfg Optional pointer to a UART transmit configuration
structure used to specify parameters required for data
transmission. If the pTxCfg structure is set to NULLPTR
(0), then the application should not call the
BSP_UART_Transmit API (i.e., the application only
performs UART data reception).

pRxCfg Optional pointer to a UART receive configuration structure
used to specify parameters required for data reception. If
the pRxCfg structure is set to NULLPTR (0), then the
application should not call the BSP_UART_Receive API
(i.e., the application only performs UART data
transmission).

Note: *To learn more about these registers, refer to the F6482 Series Product Specification
(PS0294).
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

194
UART_TX_CONFIG

Definition
typedef union UART_TX_CFG_u
{
 UART_TX_POLL Poll;
 UART_TX_IRQ Irq;
 UART_TX_DMA Dma;
} UART_TX_CFG;

Members

Correct Usage
Before calling the BSP_UART_Transmit API, applications must initial-
ize a variable of type UART_TX_POLL, UART_TX_IRQ, or UART_TX_DMA
to specify whether the BSP UART driver will transmit data using CPU
polling, interrupt control or DMA. The address of this variable is then
used to initialize the fpTxSetup member of the BSP_UART structure.
The assignment will require the variable to be cast to (UART_TX_CONFIG
*).

Poll UART_TX_POLL data structure containing configuration
parameters for data transmission using CPU polling.

Irq UART_TX_IRQ data structure containing configuration
parameters for data transmission using interrupt control.

Dma UART_TX_DMA data structure containing configuration
parameters for data transmission using DMA.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

195
UART_RX_CONFIG

Definition
typedef union UART_RX_CFG_u
{
 UART_RX_POLL Poll;
 UART_RX_IRQ Irq;
 UART_RX_DMA Dma;
} UART_RX_CFG;

Members

Correct Usage
Before calling the BSP_UART_Receive API, applications must initialize
a variable of type UART_RX_POLL, UART_RX_IRQ, or UART_RX_DMA to
specify whether the BSP UART driver will receive data using CPU poll-
ing, interrupt control or DMA. The address of this variable is then used to
initialize the fpRxSetup member of the BSP_UART structure. The
assignment will require the variable to be cast to (UART_RX_CONFIG *).

Poll UART_RX_POLL data structure containing configuration
parameters for data reception using CPU polling.

Irq UART_RX_IRQ data structure containing configuration
parameters for data reception using interrupt control.

Dma UART_RX_DMA data structure containing configuration
parameters for data reception using DMA.
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

196
UART_TX_POLL

Definition
typedef struct UART_TX_POLL_s
{
 FP_TX_SETUP fpTxSetup;
} UART_TX_POLL;

Members

Correct Usage
None.

fpTxSetup A function pointer that references the hardware specific
initialization routine that enables Poll Mode data
transmission. Applications should set the fpTxSetup
structure member to reference the
BSP_UART_PollTxInit routine to enable Poll Mode data
transmission on either UART0 or UART1.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

197
UART_TX_IRQ

Definition
typedef struct UART_TX_IRQ_s
{
 FP_TX_SETUP fpTxSetup;
 FP_UART_TXC fpTxC;
} UART_TX_IRQ;

Members

Refer to the BSP_UART_Transmit API on page 111 for the function pro-
totype of the transmit complete callback and a description of the callback
parameters.

fpTxSetup A function pointer that references the hardware specific
initialization routine that enables interrupt driven data
transmission. Applications should set the fpTxSetup
structure member to either reference the
BSP_UART0_IrqTxInit routine to enable interrupt
driven data transmission on UART0 or the
BSP_UART1_IrqTxInit routine to enable interrupt
driven data transmission on UART1.

fpTxC Specifies the address of the application’s transmit complete
callback routine. Use of the fpTxC callback is optional
when using interrupt driven data transmission. If the
fpTxC structure member is nonzero, the BSP UART driver
calls the application callback handler routine referenced by
fpTxC after the transmission completes (or aborts in error).
If the fpTxC structure member is NULLPTR (0), then the
BSP UART driver will not issue an application callback
when the UART data transmission operations complete.
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

198
Correct Usage
None.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

199
UART_TX_DMA

Definition
typedef struct UART_TX_DMA_s
{
 FP_TX_SETUP fpTxSetup;
 FP_UART_TXC fpTxC;
 UINT16 TxDmaBase;
} UART_TX_DMA;
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

200
Members

Correct Usage
None.

fpTxSetup A function pointer that references the hardware specific
initialization routine that enables data transmission with
DMA. Applications should set the fpTxSetup structure
member to either reference the BSP_UART0_DmaTxInit
routine to enable data transmission with DMA on UART0
or the BSP_UART1_DmaTxInit routine to enable data
transmission with DMA on UART1.

fpTxC Specifies the address of the application’s transmit complete
callback routine. Use of the fpTxC callback is optional
when using data transmission with DMA. If the fpTxC
structure member is nonzero, the BSP UART driver calls
the application callback handler routine referenced by
fpTxC after the transmission completes (or aborts in error).
If the fpTxC structure member is NULLPTR (0), then the
BSP UART driver will not issue an application callback
when the UART data transmission operations complete.

TxDmaBase Specifies the DMA channel the UART driver should use
for data transmission. The value of this structure member
must be between BSP_DM0 and BSP_DMA3 and the
specified channel must not be used by any other BSP
peripheral.

Note: Refer to the BSP_UART_Transmit API on page 111 for the function prototype
of the transmit complete callback and a description of the callback parameters.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

201
UART_RX_POLL

Definition
typedef struct UART_RX_POLL_s
{
 FP_RX_SETUP fpRxSetup;
} UART_RX_POLL;

Members

Correct Usage
None.

fpRxSetup A function pointer that references the hardware specific
initialization routine that enables Poll Mode data reception.
Applications should set the fpRxSetup structure member
to reference the BSP_UART_PollRxInit routine to enable
Poll Mode data reception on either UART0 or UART1.
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

202
UART_RX_IRQ

Definition
typedef struct UART_RX_IRQ_s
{
 FP_RX_SETUP fpRxSetup;
 FP_UART_RXC fpRxC;
 UINT8 * pRxBuf;
 BSP_SIZE RxBufSize;
} UART_RX_IRQ;

Members

The BSP UART driver calls the application callback when any of the fol-
lowing events occur:

• A character is received and UART driver’s receive buffer (referenced
by the pRxBuf member of the UART_IRQ_RX structure) is empty

fpRxSetup A function pointer that references the hardware specific
initialization routine that enables interrupt-driven data
reception. Applications should set the fpRxSetup
structure member to either reference the
BSP_UART0_IrqRxInit routine to enable interrupt
driven data reception on UART0 or the
BSP_UART1_IrqRxInit routine to enable interrupt
driven data reception on UART1.

fpRxC Specifies the address of the application’s receive callback
routine. Use of the fpRxC callback is optional when using
interrupt driven data reception. If the fpRxC structure
member is nonzero, the BSP UART driver calls the
application callback handler routine referenced by fpRxC
as UART data is received. If the fpTxC structure member
is NULLPTR (0), then the BSP UART driver will not issue
an application callback when UART data is received.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

203
• A character is received and transferred to the UART driver’s receive
buffer which completely fills the receive buffer

• A character is received but discarded because the UART driver’s
receive buffer is full

• A character could not be received due to a receive error detected by
the UART controller

The function prototype of the receive callback is:

reentrant void RxCallback
(
 UINT8 Idx,
 UINT8 HwStatus,
 UINT8 State
);

The Idx parameter indicates which UART device has received data. This
parameter will be in the range of 0 (BSP_NUM_UART –1).

The HwStatus parameter is the value of the UxSTAT0 Register at the time
of the receive callback. Refer to the Z8F6482 Series product specification
to learn more regarding the UxSTAT0 Register.

The State parameter is a bit field composed of the following flags:

BSP_UART_RX_
OVFL

This flag is set when the UART receive buffer
overflows (i.e., one or more bytes of received data
were discarded because there was no free space in the
UART receive buffer). This bit is cleared when the
BSP_UART_Receive API is called to remove data
from the UART driver’s receive buffer.
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

204
Correct Usage
None.

BSP_UART_RX_
FULL

This flag is set when the UART receive buffer
contains exactly RxBufSize bytes of data. The value
of RxBufSize is determined by the value of the
corresponding member in the UART_RX_IRQ
structure.

BSP_UART_RX_
FLOW_OFF

This flag is not used with interrupt driven data
reception.

BSP_UART_RX_
AVAIL

This flag is set whenever there is at least 1 byte of
data available in the UART receive buffer. Use the
BSP_UART_Receive API to retrieve the Rx data.

BSP_UART_TX_
BUSY

This flag is set during data transmission; reset after
the transfer completes. If an application calls the
BSP_UART_Transmit API while this flag is set the
BSP_ERR_BUSY error code is returned to the caller.

pRxBuffer This structure member should reference an
application defined buffer that the BSP UART driver
uses to hold receive data until the application calls the
BSP_UART_Receive API.

RxBufSize The size (in bytes) of the receive buffer referenced by
the pRxBuffer structure member. Applications can
adjust the size of the UART driver’s receive buffer
based on the amount of data expected between calls
to the BSP_UART_Receive API.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

205
UART_RX_DMA

Definition
typedef struct UART_RX_DMA_s
{
 FP_RX_SETUP fpRxSetup;
 FP_UART_RXC fpRxC;

 UINT8 * pRxBuf;
 BSP_SIZE RxBufSize;

 UINT16 RxDmaBase;

 BSP_SIZE OffThresh;
 IOReg8 RxFcPort;
 UINT8 RxFcPin;
 UINT8 RxFcIdle;
} UART_RX_DMA;
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

206
Members

The BSP UART driver calls the application callback when any of the fol-
lowing events occur:

• A character is received and UART driver’s receive buffer (referenced
by the pRxBuf member of the UART_IRQ_RX structure) is empty

• A character is received and transferred to the UART driver’s receive
buffer which completely fills the receive buffer

• If Rx flow control is enabled (i.e., only in DMA Mode) and the
RxFcPin is asserted

• A character is received but discarded because the UART driver’s
receive buffer is full

• A character could not be received due to a receive error detected by
the UART controller

fpRxSetup A function pointer that references the hardware specific
initialization routine that enables data reception using
DMA. Applications should set the fpRxSetup structure
member to either reference the BSP_UART0_DmaRxInit
routine to enable data reception via DMA on UART0 or the
BSP_UART1_DmaRxInit routine to enable data reception
via DMA on UART1.

fpRxC Specifies the address of the application’s receive callback
routine. Use of the fpRxC callback is optional when using
data reception with DMA. If the fpRxC structure member
is nonzero, the BSP UART driver calls the application
callback handler routine referenced by fpRxC as UART
data is received. If the fpTxC structure member is
NULLPTR (0), then the BSP UART driver will not issue
an application callback when UART data is received.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

207
The function prototype of the receive callback is:

reentrant void RxCallback
(
 UINT8 Idx,
 UINT8 HwStatus,
 UINT8 State
);

The Idx parameter indicates which UART device has received data. This
parameter will be in the range of 0 (BSP_NUM_UART –1).

The HwStatus parameter is the value of the UxSTAT0 Register at the time
of the receive callback. Refer to the Z8F6482 Series product specification
to learn more regarding the UxSTAT0 Register.

The State parameter is a bit field composed of the following flags:

BSP_UART_RX_
OVFL

This flag is set when the UART receive buffer
overflows (i.e., one or more bytes of received data
were discarded because there was no free space in the
UART receive buffer). This bit is cleared when the
BSP_UART_Receive API is called to remove data
from the UART driver’s receive buffer.

BSP_UART_RX_
FULL

This flag is set when the UART receive buffer
contains exactly RxBufSize bytes of data. The value
of RxBufSize is determined by the value of the
corresponding member in the UART_RX_IRQ
structure.
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

208
BSP_UART_RX_
FLOW_OFF

This flag is set when the BSP UART driver asserts the
receive flow control pin that causes the remote UART
device to stop transmitting. When this flag is set
applications should call the BSP_UART_Receive
API to empty the UART driver’s receive buffer which
will cause the driver to release the receive flow
control pin and allow the peer UART device to
resume data transmission.

BSP_UART_RX_
AVAIL

This flag is set whenever there is at least 1 byte of
data available in the UART receive buffer. Use the
BSP_UART_Receive API to retrieve the Rx data.

BSP_UART_TX_
BUSY

This flag is set during data transmission; reset when
the transfer completes. If an application calls the
BSP_UART_Transmit API while this flag is set the
BSP_ERR_BUSY error code is returned to the caller.

pRxBuffer This structure member should reference an
application defined buffer that the BSP UART driver
uses to hold receive data until the application calls the
BSP_UART_Receive API.

RxBufSize The size (in bytes) of the receive buffer referenced by
the pRxBuffer structure member. Applications can
adjust the size of the UART driver’s receive buffer
based on the amount of data expected between calls
to the BSP_UART_Receive API.

RxDmaBase Specifies the DMA channel the UART driver should
use for data reception. The value of this structure
member must be between BSP_DM0 and BSP_DMA3
and the specified channel must not be used by any
other BSP peripheral.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

209
OffThresh
OffThresh

If this structure member is nonzero and DMA is used
for UART data reception, then the BSP UART driver
uses flow control to reduce the likelihood of losing
receive data due to a full receive buffer. The BSP
UART driver activates the RxFcPin when there are
fewer than OffThresh bytes of free space in the buf-
fer referenced by pRxBuf. The RxFcPin is deacti-
vated when the number of free bytes in the receive
buffer goes above 0.5 * RxBufSize. If the transmit-
ting device checks whether or not the RxFcPin is
active before transmitting (and the BSP UART driver
is able to activate the RxFcPin before the receive
buffer fills) then data loss will be prevented.

Note that the value of OffThresh is used to set the
WMCNT field of the 16-bit DMA transfer count as
specified in the Z8 Encore! XP F6482 Series Product
Specification. Therefore, only bits 12 through 15 of
OffThresh should be nonzero. To simply setting the
flow control threshold, use one of the DMA_WMCNT_x
macro values defined in Z8F6482_DMA_SFR.h
shifted left 8 bits. For example, to set the Rx DMA
flow control threshold to 20 bytes, set OffThresh
equal to (DMA_WMCNT_20 << 8). The size of the
receive buffer (RxBufSize) should be at least 4x the
flow off threshold.

RxFcPort Specifies the GPIO port of the pin to be used with
receive flow control. This structure member should
be set to a valid GPIO port in the range of
BSP_GPIO_PORT_A to BSP_GPIO_PORT_J
(excluding BSP_GPIO_PORT_I which is not defined
for the Z8F6482 Series). This structure member is
ignored if OffThresh is 0.
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

210
Correct Usage
None.

RxFcPin Specifies the bit position of the GPIO port pin to be
used with receive flow control. This structure
member should be set to a value between BIT0 and
BIT7. This structure member is ignored if
OffThresh is 0.

RxFcIdle Specifies the value of the RxFcPin when it is
inactive (i.e., the remote UART device is allowed to
transmit). If the RxFcPin idles low set this structure
member to 0; otherwise set this structure member to
the same value as RxFcPin. This structure member is
ignored if OffThresh is 0.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

211
USB Data Structures in the BSP API

This section presents the following data structures, which are used by the
BSP USB driver.

BSP_EP – see page 212

EP_BUF_SIZE – see page 213

BSP_USB – see page 214
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

212
BSP_EP

Definition
typedef unsigned char enum BSP_EP_e
{
 BSP_EP0_IN,
 BSP_EP1_IN,
 BSP_EP2_IN,
 BSP_EP3_IN,
 BSP_EP0_OUT,
 BSP_EP1_OUT,
 BSP_EP2_OUT,
 BSP_EP3_OUT
} BSP_EP;

Usage
The first parameter of all USB endpoint functions (those that begin with
BSP_USB_EpXxx) must be one of the BSP_EP enumerated constants
shown above. IN endpoints are used to send data from the device to the
host while OUT endpoints are used to receive data sent from the host to
the device.

BSP_EP0_IN and BSP_EP0_OUT form the default control pipe. All USB
devices must implement the default control pipe to process requests from
the host. The BSP USB driver includes a module to process standard USB
requests. Consequently, the BSP USB API does not allow the default con-
trol pipe to be disabled.

Applications typically use endpoints 1 to 3 to implement their device
function.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

213
EP_BUF_SIZE

Definition
typedef unsigned char enum EP_BUF_SIZE_e
{
 EP_BUF_SIZE_8,
 EP_BUF_SIZE_16,
 EP_BUF_SIZE_32,
 EP_BUF_SIZE_64,
} EP_BUF_SIZE;

Usage
The second parameter to the BSP_USB_EpInit API must be one of the
EP_BUF_SIZE-enumerated constants shown above. The value chosen
must match the buffer size specified in the endpoint’s descriptor, which is
included with the configuration descriptor of the BSP_USB structure
passed to the BSP_USB_Init API.

The endpoint buffer size specifies the maximum size of a data packet sent
or received in a single IN or OUT transaction. Applications using the BSP
USB API can still send or receive larger buffers within transfers that
include multiple USB transactions.
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

214
 BSP_USB

Definition
typedef struct BSP_USB_s
{
 FP_USB_DEF_ENUM fpEnum;
 FP_USB_SETUP fpSetup;

 UINT16 DmaCh[MAX_USB_DMA];

 /*
 * Enumeration Information
 * The first byte in a descriptor contains the length
of
 * the descriptor. A Configuration descriptor includes
 * the length of all interface, endpoint, and any class
 * or vendor specific descriptors.
 */
 USB_DEVICE_DESC * pDevDesc;
 USB_CONFIG_DESC * pCfgDesc;
 USB_STRING_DESC * pStrDesc;
 UINT8 StringsPerLangID;
 FP_USB_USR_ENUM fpUserEnum;
 FP_USB_USR_CFG fpUserConfig;
} BSP_USB;
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

215
Members
fpEnum A function pointer specifying the routine which the

BSP USB driver calls to process standard USB
requests (as described in Chapter 9 of the USB 2.0
Specification). Servicing these requests forms the
basis of USB device enumeration. Applications
that wish to use the default BSP request handler
should use a value of BSP_USB_Request when
specifying the fpEnum structure member.
Alternatively applications can implement their
own routine to service USB requests and use the
name of that function when specifying the fpEnum
member of the BSP_USB structure.

fpSetup A function pointer that references the hardware
specific initialization routine that determines the
endpoint data transfer method (Poll Mode,
Interrupt Mode or DMA Mode). The BSP library
includes the following default initialization
routines to configure Poll Mode, Interrupt Mode
and DMA Mode endpoint data transfer:
USB_PollSetup, USB_IrqSetup, and
USB_DmaSetup. Applications that configure the
BSP USB driver to use Poll Mode data transfer
must periodically call the BSP_USB_PollEvents
API to allow processing of USB events.
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

216
DmaCh The Z8F6482 USB controller can be configured to
use up to 2 DMA channels for endpoint data
transfer. The DmaCh structure member is an array
of MAX_USB_DMA (currently defined equal to 2)
used to specify which BSP DMA channel(s) are
reserved for use by the USB controller. If the
fpSetup function pointer references either of the
USB_PollSetup or USB_IrqSetup routines both
entries in the DmaCh array should be set to 0 to
indicate no DMA channels are reserved for USB.
If the fpSetup function pointer references the
USB_DmaSetup routine, then at least one of the
DmaCh entries should be set to a nonzero value to
indicate which DMA channel(s) have been
reserved for use by the USB controller. In this
instance DmaCh array entries must be in the range
of BSP_DMA0 to BSP_DMA3. If all DmaCh array
entries are 0 it will not be possible to transfer
endpoint data to/from the host.

pDevDesc References the application’s USB device
descriptor that contains general information about
the device. After the USB device attaches to the
bus the host begins the process of enumeration.
One of the first items the host requests during
enumeration is the device descriptor. To learn
more, refer to the description of the
USB_DEVICE_DESC structure and the USB 2.0
Specification.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

217
pCfgDesc References a byte array containing the
concatenation of all configuration, interface, and
endpoint descriptors (along with any class or
vendor specific descriptors) used by all
configurations within the USB device. During
enumeration the host issues requests for the
device’s configuration descriptor(s). When
returning the configuration descriptor, the USB
device also returns the set of interface and
endpoint descriptors used by that configuration in
a single USB transfer. To learn more, refer to the
description of the USB_CONFIG_DESC,
USB_INTERFACE_DESC, and
USB_ENDPOINT_DESC structure definitions and
the USB 2.0 Specification.

pStrDesc References an optional table of string descriptors.
USB strings are composed of 16-bit UNICODE
characters that can be displayed to an end user in a
human readable format. The use of strings is
optional within a USB device. If strings are not
used, then the string index of all USB descriptors
should be set to 0. To learn more, refer to the
description of the USB_STRING_DESC structure
and the USB 2.0 Specification.

StringsPerLangID Strings within the string descriptor table are
grouped according to their language identifier with
each grouping containing StringsPerLangID
strings. For example the screen descriptor table
might contain 3 groups of string descriptors for the
German, English, and French translations of five
UNICODE strings. In this instance the
StringsPerLangID member of the BSP_USB
stricture would be set to 5.
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

218
fpUserEnum The BSP USB library includes the
BSP_USB_Request routine that is capable of
servicing standard USB device, interface, and
endpoint requests. However this default
enumerator is not able to service class or vendor
specific requests. If the device application must
support class or vendor requests than the
application must specify a nonzero value for the
fpUserEnum function pointer that references the
application provided routine to service the
application-specific USB class and/or vendor
requests. If a non standard (or class or vendor)
request is received and the fpUserEnum structure
member is NULL the request is stalled.
If the fpUserEnum function pointer is non-zero, it
must reference an application-defined routine that
accepts a pointer to a USB_DEV_REQUEST
structure and return a BSP_STATUS value
indicating wether the request was successfully
processed (BSP_ERR_SUCCESS) or could not be
completed (any other value). For more
information, please refer to the
USB_DEV_REQUEST structure definition.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

219
Correct Usage
Applications using the BSP USB driver must declare a variable of type
BSP_USB and initialize it with valid values and pass the address of the
structure to the BSP_USB_Init API before attempting to call any other
USB API.

The application should specify an fpUserConfig parameter that refer-
ences an application-defined routine with the following function proto-
type:

BSP_STATUS UserConfigFunc(UINT8 Config, UINT8 Interface,
UINT8 AltSetting);

When the host application issues the standard USB Set Configuration
request, the BSP USB driver calls the function referenced by the
fpUserConfig member of the BSP_USB structure passed to the
BSP_USB_Init API. In this instance, the Interface and AltSetting
parameters will be set to 0 and the Config parameter will be a non-zero
value that corresponds to one of the (or the only) configuration descriptor
referenced by the fpCfgDesc member of the BSP_USB structure.

Typically, applications will need to save the values of the Config,
Interface, and AltSetting parameters in global variables so that the
application can detect when the host application is activating (or deacti-

fpUserConfig After the USB host successfully completes
enumeration it will activate one of the device
configurations (or the only device configuration)
referenced by the pCfgDesc structure member.
As a result the BSP USB driver will call the
application callback referenced by
fpUserConfig (only if the fpUserConfig
structure member is nonzero). This application
provided callback routine should be used to
initialize the set of endpoint descriptors required to
implement the configuration selected by the host.
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

220
vating) a particular configuration and when the host is switching between
alternate settings (if applicable) within a specific interface. Applications
that define only one configuration that does not include any alternate set-
tings for any of the configuration’s concurrent interfaces only need to
activate all endpoints (via calls to the BSP_USB_EpInit API) within all
interfaces when a non-zero Config parameter is specified.

When the host application switches configurations (or activates the only
configuration defined by the device), it is implicitly activating alternate
setting 0 of all interface(s) within that configuration. In this instance, the
application should activate the set of endpoints specified in the endpoint
descriptor(s) corresponding to alternate setting 0 (the default alternate set-
tings) of each interface within the configuration.

If the host application issues a Set Interface request to activate one of the
(mutually exclusive) alternate settings for a particular interface, the BSP
USB driver will issue another call to the fpUserConfig routine with the
same value of the Config parameter but with (possibly) different
Interface and/ or AltSetting parameters depending on which alter-
nate setting the host selected for a particular interface. It is up to the appli-
cation to determine what, if any, modification is required to the set of
endpoints previously enabled within the configuration callback routine
specified by the fpUserConfig member of the BSP_USB structure.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

221
USB_DEVICE_DESC

Definition
typedef struct USB_DEVICE_DESC_s
{
 UINT8 bLength;
 UINT8 bDescriptorType;
 USB_WORD bcdUSB;
 UINT8 bDeviceClass;
 UINT8 bDeviceSubClass;
 UINT8 bDeviceProtocol;
 UINT8 bMaxPacketSize;
 USB_WORD idVendor;
 USB_WORD idProduct;
 USB_WORD bcdDevice;
 UINT8 iManufacturer;
 UINT8 iProduct;
 UINT8 iSerialNumber;
 UINT8 bNumConfigurations;
} USB_DEVICE_DESC;
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

222
Members
bLength Length of the descriptor in bytes. Use a value of

sizeof(USB_DEVICE_DESC).
bDescriptorType Code that identifies this as a device descriptor.

Use a value of USB_DESC_DEVICE.
bcdUSB The 16-bit little-endian, USB defined vendor

identification code, a USB specification to
which the device descriptor conforms. Use a
value of USB_UINT16 (0x200) to indicate that
this device descriptor is USB version 2.0.

bDeviceClass Indicates the USB-defined class implemented
by this device.

bDeviceSubClass Indicates the USB-defined subclass
implemented by this device. The particular USB
class specification defines the set of permissible
subclass codes.

bDeviceProtocol Identifies the device-wide protocol for the
implemented device class and subclass. The
USB class and subclass specification define the
set of supported protocols that may be used
either on a device wide or per-interface basis.

bMaxPacketSize Defines the maximum data packet size that will
be used on the default control pipe (i.e.,
endpoint 0). Valid values of the
bMaxPacketSize structure member are: 8, 16,
32, or 64 bytes. The BSP USB driver supports a
maximum packet size of 64 bytes.

idVendor 16-bit little-endian, USB defined vendor
identification code. For example Zilog's USB
vendor ID is 1251 so the default USB demo
program set the idVendor structure member to
USB_UINT16(1251).
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

223
Correct Usage
All USB devices must provide a valid device descriptor. Set the pDev-
Desc member of the BSP_USB structure to reference the application’s
device descriptor.

idProduct 16-bit little-endian, vendor/manufacturer
defined code that identifies this USB product.

bcdDevice 16-bit little-endian, vendor/manufacturer code
that identifies the (hardware/firmware) version
of this USB device.

iManufacturer Optional index of the USB string descriptor for
the device manufacturer. If this implementation
is not using string descriptors, set the value of
iManufacturer to 0. To learn more, refer to the
description of the USB_STRING_DESC.

iProduct Optional index of the USB string descriptor that
describes this product. If this implementation is
not using string descriptors, set the value of
iProduct to 0.

iSerialNumber Optional index of the USB string descriptor
containing the serial number for this device. If
this implementation is not using string
descriptors, set the value of iSerialNumber to 0.

bNumConfigurations The number of configuration descriptors in the
byte array referenced by the pCfgDesc of the
BSP_USB structure. This value of
bNumConfigurations must be at least 1.
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

224
USB_CONFIG_DESC

Definition
typedef struct USB_CONFIG_DESC_s
{
 UINT8 bLength;
 UINT8 bDescriptorType;
 USB_WORD wTotalLength;
 UINT8 bNumInterfaces;
 UINT8 bConfigurationValue;
 UINT8 iConfiguration;
 UINT8 bmAttributes;
 UINT8 bMaxPower;
} USB_CONFIG_DESC;
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

225
Members
bLength Length of the descriptor in bytes. Use a value of

sizeof(USB_CONFIG_DESC).
bDescriptorType Code that identifies this as a configuration

descriptor. Use a value of
USB_DESC_CONFIGURATION.

wTotalLength The 16-bit little-endian combined length of this
configuration and the set of all interface-,
endpoint-, and class/vendor-specific descriptors
included within this configuration. Class and/or
vendor specific descriptors follow the standard
descriptor that they qualify. The placement of
class/vendor descriptors is typically specified in
the class or vendor specification.
If a device supports more than one configuration,
the set of descriptors for the second configuration
(assigned a different nonzero configuration value)
will immediately follow the first configuration.
Similarly, the set of descriptors for configuration
(n+1) immediately follow the set of descriptors for
configuration (n).

bNumInterfaces The number of interfaces supported by this
configuration.

bConfigurationV
alue

A nonzero value the host uses to select this
configuration using the Set Configuration request.
If the host selects configuration 0, it is indicating
that the device should disable the current
configuration and return to the USB address state.

iConfiguration Optional index of the USB string descriptor
describing this configuration. If this
implementation is not using string descriptors, set
the value of iConfiguration to 0.
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

226
Correct Usage
All USB devices must define at least 1 configuration descriptor that
includes at least 1 interface descriptor and possibly 1 or more endpoint
descriptors.

bmAttributes Bit field describing the characteristics of this
configuration. The meaning assigned to each set of
bits (BIT7 is the most significant bit in the byte):
BIT7 Reserved; must be set to 1.
BIT6 A value of 1 indicates the device is self-

powered (or partially self-powered and
partially bus-powered); 0 indicates the
device is totally bus-powered

BIT5 A value of 1 indicates that the device
supports remote wake-up; 0 indicates
remote wake-up is not supported

BIT3
..
BIT0

Reserved; must be set to 00000'b.

bmAttributes
(cont’d.)

bMaxP
ower

Indicates the amount of current the bus-
powered (or partially bus-powered,
partially self-powered) device consumes
from the USB. The current consumption is
specified in units of 2 mA.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

227
USB_INTERFACE_DESC

Definition
typedef struct USB_INTERFACE_DESC_s
{
 UINT8 bLength;
 UINT8 bDescriptorType;
 UINT8 bInterfaceNumber;
 UINT8 bAlternateSetting;
 UINT8 bNumEndpoints;
 UINT8 bInterfaceClass;
 UINT8 bInterfaceSubClass;
 UINT8 bInterfaceProtocol;
 UINT8 iInterface;
} USB_INTERFACE_DESC;
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

228
Members
bLength Length of the descriptor in bytes. Use a value of

sizeof(USB_INTERFACE_DESC).
bDescriptorType Code that identifies this as an interface descriptor.

Use a value of USB_DESC_INTERFACE.
bInterfaceNumber Zero-based index of this interface. All interfaces

within a configuration must have a unique
bInterfaceNumber (and operate concurrently). All
alternate interface descriptors have the same
bInterfaceNumber (and are mutually exclusive).

bAlternateSetti
ng

Zero-based index of this (alternate) interface. If a
configuration only contains one interface with no
alternate settings, then the bInterfaceNumber and
bAlternateSetting structure members are both set
to 0. The first alternate interface descriptor would
also have a bInterfaceNumber value of 0 but the
bAlternateSetting structure member would be set
to 1. When the host selects a particular
configuration, the default alternate interface
(bAlternetSetting = 0) should be activated on
all concurrent interfaces.

bNumEndpoints The number of endpoints (other than endpoint 0 IN
and OUT) used by this interface. The set of
endpoint descriptors immediately follow their
(alternate) interface descriptor.

bInterfaceClass

The USB defined interface class to which this
interface conforms.

bInterfaceSubcl
ass

The USB defined interface subclass to which this
interface conforms.

bInterfaceProto
col

The USB defined protocol code supported by this
interface.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

229
Correct Usage
None.

iInterface Optional index of the USB string descriptor
describing this interface. If this implementation is
not using string descriptors, set the value of
iInterface to 0.
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

230
USB_ENDPOINT_DESC

Definition
typedef struct USB_ENDPOINT_DESC
{
 UINT8 bLength;
 UINT8 bDescriptorType;
 UINT8 bEndpointAddress;
 UINT8 bmAttributes;
 USB_WORD wMaxPacketSize;
 UINT8 bInterval;
} USB_ENDPOINT_DESC;
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

231
Members
bLength Length of the descriptor in bytes. Use a value of

sizeof(USB_ENDPOINT_DESC).
bDescriptorType Code that identifies this as an endpoint descriptor.

Use a value of USB_DESC_ENDPOINT.
bEndpointAddress A bit field encoding the USB endpoint address.

The meaning assigned to each set of bits is:
BIT7 Endpoint direction. A value of 1 indicates

an IN endpoint (data sent from device to
host). A value of 0 indicates an OUT
endpoint (data sent from host to device).

BIT6
..
BIT4

Reserved; must be set to 000'b.

BIT3
..
BIT0

Endpoint number (0 to 15).

bmAtt
ribut
es

Bitfield describing the characteristics of
this endpoint. The meaning assigned to
each set of bits is:

BIT7
..
BIT6

Reserved; must be set to 0.

For nonisochronous endpoints:
BIT5
..
BIT2

Reserved; must be set to 0.

For Isochronous endpoints (not supported by the
BSP USB controller or driver):
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

232
Correct Usage
The BSP USB driver does not support isochronous endpoints and the only
control endpoints that are supported are endpoint 0 OUT (and IN).
Because there is never an endpoint descriptor for the default control pipe,
application endpoint descriptors should only use a bmAtrributes value
of 2 or 3 to indicate a bulk or interrupt endpoint respectively.

BIT5
..
BIT4

Endpoint usage. Encodes one of the
following values: Data (00’b), Feedback
(01’b), Implicit feedback data (10’b)
or Reserved (11’b).

BIT3
..
BIT2

Endpoint synchronization type. Encodes one
of the following values: None (00’b),
Asynchronous (01’b), Adaptive (10’b)
or Synchronous (11’b).

For all endpoints:
BIT1
..
BIT0

Endpoint type. Encodes one of the
following values: Control (00’b),
Isochronous (01’b), Bulk (10’b) or
Interrupt (11’b).

wMaxPacketSize Defines the maximum data packet size for this
endpoint. Valid values of the bMaxPacketSize
structure member are: 8, 16, 32, or 64 bytes. The
BSP USB driver supports a maximum packet size
of 64 bytes.

bInterval Specifies the interval used for polling the endpoint.
For a full-speed interrupt endpoint the bInterval
must be between 1 and 255 and specifies the
maximum number of milliseconds between host
transactions. The host may choose to use a polling
interval shorter than bInterval.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

233
USB_STRING_DESC

Definition
typedef struct USB_STRING_DESC_s
{
 UINT8 bLength;
 UINT8 bDescriptorType;
 /*
 * Although the wDat structure member is declared as a
 * single 16-bit value, the actual number of 16-bit
 * characters in the wDat array is: (bLength -2) / 2.
 *
 * Typically, application code will not declare and
 * initialize a variable of type USB_STRING_DESC; but
 * will access an array of bytes as a USB_STRING_DESC
 * through a pointer.
 */
 USB_WORD wDat[1];
} USB_STRING_DESC;
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

234
Members

Correct Usage
Strings within the USB string descriptor table are grouped according to
their language identifier. Each grouping contains the same number of
strings that are typically a direct translation of each other. Other descrip-
tors use a (nonzero) 1-byte identifier to select a particular string within
each grouping. String index 0 is common to all language groupings and
identifies the set of language identifiers within the descriptor table. The
language identifiers are 16-bit little-endian values as defined by the USB
Implementers Forum.

Typically, BSP USB applications use a table of 8-byte values to initialize
the USB string descriptor as shown in the following example. The sample
string table contains 2 string descriptors (that other USB descriptors
would reference as string ID 1 and string ID 2) in 2 languages; US Eng-
lish (language ID 0x0409) and Standard French (language ID 0x040C).

bLength Length of the string descriptor in bytes. The bLength
structure member must include the length (in bytes) of the
bLength and bDescriptorType fields (a total of 2
bytes). When counting the length of the actual string
characters remember that each UNICODE character is 2
bytes long.

bDescript
orType

Code that identifies this as a device descriptor. Use a value
of USB_DESC_STRING.

wDat An array of UNICODE characters containing the message
string. The structure definition indicates the wDat is 2
bytes long but the actual length of the string descriptor is
determined by the value of the bLength structure member.
Typically, application is declare a byte-array containing the
string descriptor(s) and cast the pStrDesc member of the
BSP_USB structure to reference the byte array containing
the actual set of string descriptors.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

235
The English representations of the strings are one and two, while the
French representations are un and deux.

UINT8 StringDescTable[] =
{
 // String index 0 contains the supported language IDs
 6,USB_DESC_STRING, 0x09, 0x04, 0x0C, 0x04,

 // US English versions of string index 1 and 2 follow
 2+2*(3), USB_DESC_STRING, 'o',0,'n',0,'e',0,
 2+2*(3), USB_DESC_STRING, 't',0,'w',0,'o',0,

 // Std French versions of string index 1 and 2 follow
 2+2*(2), USB_DESC_STRING, 'u',0,'n',0,
 2+2*(4), USB_DESC_STRING, 'd',0,'e',0,'u',0,'x',0
};
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

236
USB_DEV_REQUEST

Definition
typedef struct USB_DEV_REQUEST_s
{
 UINT8 bmRequestType;
 UINT8 bRequest;
 USB_WORD wValue;
 USB_WORD wIndex;
 USB_WORD wLength;
} USB_DEV_REQUEST;
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

237
Members
bmRequest
Type

Bitfield that identifies the type of request being issued. The
meaning assigned to each set of bits is:
BIT7 Direction of data transfer for this request. A

value of 0 indicates a transfer from host to
device; a value of 1 indicates a transfer from
device to host.

BIT5 ..
BIT5

Request type. Valid values for these bits are
USB_REQ_TYPE_STD (00’b),
USB_REQ_TYPE_CLASS (01’b), and
USB_REQ_TYPE_VENDOR (10’b). Standard
requests (00’b) are serviced by the BSP USB
driver if the fpEnum member of the BSP_USB
structure is set to BSP_USB_Request. Class
and vendor requests are passed to the application
provided request handler specified by the
fpUserEnum member of the BSP_USB
structure if the value of fpUserEnum structure
member is nonzero. Otherwise the BSP USB
driver returns an error to the host (protocol stall
on EP0) for all class and vendor requests.

BIT4 ..
BIT0

Entity targeted by this request. Valid values
for these bits are: Device (0), Interface (1),
Endpoint (2), and Other (3). All other values
are reserved.

bRequest USB defined code that identifies the standard
device request being issued (e.g.,
USB_GET_DESCRIPTOR or
USB_SET_CONFIGURATION). The USB
Implementers Forum also defines class
specific requests.
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

238
Correct Usage
Applications will typically just use the BSP supplied routine to service
standard USB device requests (as identified in Chapter 9 of the USB 2.0
specification) by setting the fpEnum member of the BSP_USB structure to
reference the BSP_USB_Request routine.

Applications that are not required to process class or vendor-specific
request should set the fpUserEnum member of the BSP_USB structure to
0. In this instance the BSP_USB_Request default handler for standard
USB requests will return an error to the host (protocol stall) if the host
issues a class or vendor request to this device.

Application that must service class or vendor-specific requests should
implement a handler for those requests, then set the fpUserEnum func-
tion pointer in the BSP_USB structure to reference the application pro-
vided handler. The function prototype of the request handler is shown in
the following code snippet:

BSP_STATUS UserEnumHandler(USB_DEV_REQUEST * pReq);

If the device request is successfully processed by the application, then the
routine should return BSP_ERR_SUCCESS. If the routine returns any other

wValue: 16-bit little-endian vale whose meaning is
determine by the value of the bRequest (and
bmRequestType) structure members.

wIndex: Additional 16-bit value whose meaning is
determined by the value of the previous
members of the device request.

wLength: If the specified request involves the use a
data phase in the control transaction the
wLength structure member typically
identifies the (maximum) expected size of the
data.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

239
value, the BSP_USB_Request routine will return an error to the host.
Refer to the USB_Demo sample project for an example of how to imple-
ment a class-specific request handler. This particular sample program ser-
vices select Communication Device Class (CDC) requests for the purpose
of implementing a USB virtual COM port.
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

240
EP_CB_INFO

Definition
typedef struct EP_CB_INFO_s
{
 BSP_EP EpNum;
 EP_STATUS Status;
 UINT8 * pDat;
 BSP_SIZE Len;
} EP_CB_INFO;
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

241
Members
EpNum BSP defined endpoint number for which the endpoint

transfer done callback is being called. Valid values for the
EpNum field range from BSP_EP0_IN to BSP_EP3_OUT.

Status Bitfield encoding the status of the BSP endpoint. The
meaning assigned to each bit is:
BIT7 EP_VALID. A value of 1 indicates that the

endpoint is valid. If the endpoint is no longer valid
(BIT7=0) the application should not call the
BSP_USB_EpTrasnmit or BSP_USB_EpReceive
APIs.

BIT6 EP_BUSY. This bit gets set to 1 when the endpoint
has data to send to the host or is waiting for the
host to fill its receive buffer. Typically, this bit is 0
when the endpoint transfer done callback routine
is called.

BIT5 EP_STALL. This bit is set if the endpoint has been
stalled. The host can cause an endpoint stall by
issuing a standard USB request (and can issue a
different request to clear the endpoint stall;
possibly after user-intervention). If a severe error
occurs a USB device may also stall and endpoint
(via calling the undocumented SetEpStall API)
which is likely to require operator intervention on
the host to clear (even if the undocumented
ClearEpStall API is called).
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

242
Correct Usage
The fpXferDone parameter passed to the BSP_USB_EpInit API refer-
ences the application callback routine that the BSP USB driver calls at the
conclusion of the endpoint data transfer operation. The function the appli-
cation provides for the callback should use the function prototype shown
in the following code snippet:

reentrant void EpXferDoneCB
(

BIT4 EP_SEND_ZLP. This bit is set to 1 for IN endpoint
when the BSP USB driver must send a zero length
packet to the host. By default the current
implementation of the BSP USB driver will send a
zero length packet on all IN endpoints (not just
EP0 IN) when the device requests a transfer length
that is an integer multiple of the endpoint
maximum packet size.

pDat A pointer to an application supplied buffer that
contains data received from the host (for an OUT
endpoint) or points to the transmit buffer location
from which point the IN transfer could not
complete. For a successful IN transfer, pDat points
to the byte that follows the last byte in the original
transit buffer.

Len The number of bytes in the buffer referenced by
pDat. For an OUT transfer pDat contains the Len
bytes of data received from the host. For a
successful IN transfer Len is 0; if the transfer did
not complete Len is the number of bytes at the end
of the application transmit buffer that were not
buffered by the USB driver for transmission to the
host.
Universal Serial Bus API Reference RM006404-0215

 Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

243
 EP_CB_INFO * pEpInfo
);

All OUT endpoints should specify a nonzero value for the fpXferDone
parameter so the application gets notified when data is received from the
host. IN endpoints are not required to specify an fpXferDone parameter
if it is not necessary to be notified of when the device-to-host data transfer
completes. When Poll Mode is used for endpoint data transfers, the BSP
USB driver does not issue callbacks when an IN transfer completes
(regardless of the value of the fpXferDone parameter passed to
BSP_USB_EpInit), because Poll Mode IN transfers complete before
returning from the BSP_USB_EpTransmit API.
RM006404-0215 FP_I2C_DONE (fpXferDone)

Z8 Encore! XP® F6482 Series API
Programmer’s Reference Manual

244
Customer Support

To share comments, get your technical questions answered, or report
issues you may be experiencing with our products, please visit Zilog’s
Technical Support page at http://support.zilog.com.

To learn more about this product, find additional documentation, or to
discover other facets about Zilog product offerings, please visit the Zilog
Knowledge Base or consider participating in the Zilog Forum.

This publication is subject to replacement by a later edition. To determine
whether a later edition exists, please visit the Zilog website at http://
www.zilog.com.
Customer Support RM006404-0215

http://www.zilog.com/kb
http://www.zilog.com/kb
http://www.zilog.com/forum
http://www.zilog.com
http://www.zilog.com

	Z8 Encore! XP® F6482 Series API Programmer's Reference Manual
	Revision History
	Table of Contents
	The F6482 Series Board Support Package
	Sample Programs

	Advanced Encryption Standard Accelerator
	BSP_AES_Init
	BSP_AES_Stop
	BSP_AES_Transform

	Clock System API Reference
	CLKS Functions in the BSP API
	BSP_CLKS_Config

	Digital to Analog Converter
	BSP_DAC_Init
	BSP_DAC_Stop
	BSP_DAC_Abort
	BSP_DAC_OutputOneByteSignedValue
	BSP_DAC_OutputOneByteUnsignedValue
	BSP_DAC_OutputTwoByteSignedValue
	BSP_DAC_OutputTwoByteUnsignedValue
	BSP_DAC_OutputBuffer

	Direct Memory Access API Reference
	DMA Functions in the BSP API
	BSP_DMA_Init
	BSP_DMA_Acquire
	BSP_DMA_Release
	BSP_DMA_Setup
	BSP_DMA_SetupLL
	BSP_DMA_Start
	BSP_DMA_Abort
	BSP_DMA_GetCount
	BSP_DMA_GetCountLL

	Event System API Reference
	Event System Functions in the BSP API
	BSP_Event_Acquire
	BSP_Event_Release
	BSP_Event_Connect
	BSP_Event_Disconnect

	General Purpose Input/Output API Reference
	GPIO Functions in the BSP API
	BSP_GPIO_AltFunc
	BSP_GPIO_DD_In
	BSP_GPIO_DD_Out
	BSP_GPIO_Set
	BSP_GPIO_Clear
	BSP_GPIO_Toggle

	Inter-Integrated Circuit API
	I2C Functions in the BSP API
	BSP_I2C_Init
	BSP_I2C_Stop
	I2C_Setup Functions
	I2C Transfer and Receive Functions
	I2C_Set_Slave_Buffer();
	I2C_Brg
	BSP_I2C_General_Call_Address

	Interrupt Controller API Reference
	IRQ Macros in the BSP API
	BSP_IRQxEN_DBLD
	BSP_IRQxEN_LO
	BSP_IRQxEN_NOM
	BSP_IRQxEN_HI
	BSP_IRQx_CLR
	BSP_IRQ_ES_FALLING
	BSP_IRQ_ES_RISING
	BSP_IRQ_SS0_FIRST
	BSP_IRQ_SS0_SECOND
	BSP_IRQ_SS1_FIRST
	BSP_IRQ_SS1_SECOND
	BSP_IRQ_DISABLE
	BSP_IRQ_RESTORE

	Serial Peripheral Interface API Reference
	SPI Functions in the BSP API
	BSP_SPI_Init
	BSP_SPI_Xfer
	BSP_SPI_Receive
	BSP_SPI_Transmit
	BSP_SPI_Stop

	Timer API Reference
	TMR Macros in the BSP API
	BSP_TMR_READ
	BSP_TMR_START
	BSP_TMR_STOP

	Universal Asynchronous Receiver Transmitter API Reference
	UART Functions in the BSP API
	BSP_UART_Init
	BSP_UART_Transmit
	BSP_UART_Receive
	BSP_UART_Stop
	BSP_MP_Transmit
	BSP_DMX_Transmit

	Universal Serial Bus API Reference
	USB Functions in the BSP API
	Endpoint Functions in the BSP USB API
	BSP_USB_Init
	BSP_USB_PollEvents
	BSP_USB_Resume
	BSP_USB_Stop
	BSP_USB_EpAbort
	BSP_USB_EpInit
	BSP_USB_EpStop
	BSP_USB_EpTransmit
	BSP_USB_EpReceive

	Appendix A. Data Structures
	AES Structures and Unions in the BSP API
	BSP_AES
	AES_CFG
	AES_POLL_CFG
	AES_IRQ_CFG
	AES_DMA_CFG
	CLKS Data Structure in the BSP API
	BSP_CLKS
	DAC Structures and Unions in the BSP API
	BSP_DAC
	DAC_ BUF_OUTPUT_CFG
	DAC_BUF_OUTPUT_IRQ
	DAC_BUF_OUTPUT_DMA
	DMA Data Structures in the BSP API
	DMA_DESC
	GPIO Data Structures in the BSP API
	BSP_GPIO_CFG
	I2C Structures and Unions in the BSP API
	BSP_I2C
	I2C_CFG
	I2C_COMMON_CFG
	I2C_MASTER_POLLING
	I2C_MASTER_IRQ
	I2C_MASTER_DMA
	I2C_SLAVE_POLLING
	I2C_SLAVE_IRQ
	I2C_SLAVE_DMA
	I2C_Status
	I2C_State
	I2C Callback Functions in the BSP API
	FP_I2C_DONE (fpXferDone)
	SPI Data Structures in the BSP API
	BSP_SPI
	UART Data Structures in the BSP API
	BSP_UART
	UART_TX_CONFIG
	UART_RX_CONFIG
	UART_TX_POLL
	UART_TX_IRQ
	UART_TX_DMA
	UART_RX_POLL
	UART_RX_IRQ
	UART_RX_DMA
	USB Data Structures in the BSP API
	BSP_EP
	EP_BUF_SIZE
	BSP_USB
	USB_DEVICE_DESC
	USB_CONFIG_DESC
	USB_INTERFACE_DESC
	USB_ENDPOINT_DESC
	USB_STRING_DESC
	USB_DEV_REQUEST
	EP_CB_INFO

	Customer Support

