User Guide for

FEBFAN7688_I00250A Evaluation Board

FAN7688, LLC Resonant, 250 W, 400 V to 12.5 V Converter, Evaluation Board

Featured Fairchild Products:
FAN7688
FAN3225C

Direct questions or comments about this evaluation board to:
"Worldwide Direct Support"

Fairchild Semiconductor.com

Table of Contents

Table of Contents 2

1. Introduction 3
1.1. General Description of FAN7688 3
1.2. FAN7688 Internal Block Diagram 4
1.3. FAN7688 Controller Features 4
2. Overview of the Evaluation Board 5
2.1. Photographs 6
3. Specifications 7
4. Test Procedure 8
4.1. Safety Precautions 8
5. Schematic 10
6. List of Test Points 11
7. Transformer Specifications 12
7.1. LLC Power Transformer 12
7.2. Current Sense Transformer 13
8. Four-Layer PCB and Assembly Images 14
9. Bill of Materials (BOM) 17
10. Test Data 19
10.1. Startup 19
10.2. Hold-Up 21
10.3. Steady-State Operation 22
10.4. Zero-Voltage Switching (ZVS) 27
10.5. SR Performance 29
10.6. PRDT and SRDT Timing. 31
10.7. Protection Functions 35
10.1. Efficiency 38
10.2. Output Voltage Load Regulation 40
10.3. Control to Output Measurements 41
10.4. Thermal Images 43
11. Ordering Information 45
12. Revision History 45

The following user guide supports the FEBFAN7688_I00250A, FAN7688, 250 W, and 400 V to 12.5 V Evaluation Board (EVB). It should be used in conjunction with the FAN7688 datasheet, and FAN7688 Excel®-based Design Tool.

1. Introduction

This document describes the use and performance of the FAN7688, 250 W , and 400 V to 12.5 V EVB. The input voltage range is $300 \mathrm{~V}_{\mathrm{DC}}<\mathrm{V}_{\mathrm{IN}}<450 \mathrm{~V}_{\mathrm{DC}}$ and the output is a 12.5 V , regulated over an output current range of $0 \mathrm{~A}<\mathrm{I}_{\text {out }}<20 \mathrm{~A}$. The EVB allows ease of probing by making available numerous test points and options for installing current loops. Although the input voltage range is typical of the output voltage from a PFC boost power stage, the end application of this EVB is considered general purpose for the use of testing the many features of the FAN7688 LLC resonant controller. This document contains a general description of the FAN7688 LLC resonant controller, EVB specification, power-on and off procedure, schematic, Bill of Materials (BOM), and typical EVB performance characteristics.

1.1. General Description of FAN7688

The FAN7688 is a secondary-side, LLC resonant, Pulse Frequency Modulated (PFM) controller with dedicated Synchronous Rectification (SR) gate drive, offering best in class efficiency for isolated DC/DC converters. The primary resonant current is sensed and integrated to employ a type of peak current mode control known as charge control. The integrated resonant current is combined with a triangular waveform generated from an internal oscillator to determine the switching frequency. This provides a better control-to-output transfer function of the power stage making the feedback loop design easy and allows true input power limit capability. The FAN7688 also incorporates a closed loop soft-start function that uses an adaptive soft-start current to prevent saturation of the error amplifier which allows monotonic startup of the output voltage independent of load current. A dual edge tracking, adaptive SR drive technique minimizes body-diode conduction of the SR MOSFETs thereby maximizing overall efficiency.
1.2. FAN7688 Internal Block Diagram

Figure 1. FAN7688 Internal Block Diagram

1.3. FAN7688 Controller Features

The FAN7688 is a secondary side controller designed to modulate the frequency to control a DC to DC isolated LLC converter. Secondary side control offers several unique advantages over primary side control. Direct sensing of the SR drain is necessary for accurate SR timing optimization and better SR reliability under all operating conditions. The output voltage is also directly sensed by the controller which allows accurate closed loop soft-start, direct interface to the load and output short circuit overload protection during startup. And since no optocoupler is required, there is no variation in loop gain due to the variation in optocoupler Current Transfer Ration (CTR).

The FAN7688 uses a hybrid control scheme where, depending upon line or load conditions (COMP voltage), operation can occur using either fixed frequency PWM mode or traditional PFM mode. PFM mode commands highest switching frequency during light load and startup. High frequency switching losses are dominant during light load. Light load efficiency is therefore improved when the power stage is controlled using fixed frequency, PWM mode. The transition between PWM and PFM is seamless and can be programmed as a function of load current via the PWMS pin. This allows custom efficiency tailoring around a particular light load efficiency point of interest.

Further light load efficiency improvements can be realized by disabling SR switching at a particular minimum load point. The FAN7688 SR_SKIP function is programmable through the ICS pin. When the peak value of the integrated current sense is less than the SR_SKIP enable threshold, SR switching is disabled. Whenever the SRs are disabled, load current will flow through the SR body diodes or parallel Schottky rectifiers can be used as an option for even higher light load efficiency.

A comprehensive set of auto-restart protection functions includes: pulse-by-pulse OverCurrent Protection (OCP), Output Short Protection (OSP), non-Zero Voltage Switching (ZVS) Protection (NZP), Overload Protection (OLP) and Over-Temperature Protection (OTP). Capacitive region operation can be detrimental to an LLC converter. During light load PFM mode, the frequency decreases as the voltage gain is increasing to maintain output regulation. Inevitably, operation deep below resonance occurs where, at some minimum frequency, the maximum peak gain is obtained, pushing the converter into the capacitive region. Loss of ZVS, DC gain inversion and body diode reverse recovery are some of the problems associated with capacitive region operation. The FAN7688 FMIN pin allows the minimum frequency to be programmed. By setting a stop before the absolute maximum gain is obtained, capacitive region operation can easily be prevented.

2. Overview of the Evaluation Board

The FEBFAN7688_I00250A EVB uses a four-layer Printed Circuit Board (PCB) designed for $250 \mathrm{~W}(12.5 \mathrm{~V} / 20 \mathrm{~A})$ rated power. The EVB dimensions are $163 \mathrm{~mm} \times 89 \mathrm{~mm} \times 25 \mathrm{~mm}(\mathrm{LxWxH})$. The maximum rated power is designed for 250 W but the maximum power limit is set to 375 W . The EVB is a DC to DC converter and operates from a 400 V input, typical of the voltage produced from an off-line PFC boost converter. The output voltage is set to regulate at 12.5 V . An input bulk capacitor, C 1 , is included but in the case of operating from a PFC output, C 1 would be redundant since the PFC output would include a similar size bulk capacitor necessary for hold up. The EVB also requires an external 12 V bias supply voltage for operation. Connections for the DC input voltage, DC output voltage and DC bias supply voltage are made possible through J9, J6, J15 and J16. Remote sense connections (J7, J26) are also available for accurately monitoring output voltage. Control loop measurements can easily be made by injecting a perturbation signal across a 49.9Ω (R6) resistor through +Loop (J8) and -Loop (J10). Primary resonant current can be measured by removing R4 and soldering a loop of wire (minimum AWG\#22) into the plated through holes located on each R4 conductive pad. Similarly, secondary AC current can be measured by removing R5 and soldering a loop of wire (minimum AWG\#16) onto the conductive R4 SMD pads. Primary side gate drive can be monitored for the high-side MOSFET (floating) between J5 and the source lead of Q1 and for the low-side MOSFET (GND referenced) between J13 and J17. On the secondary side, the SR MOSFET gate drives can be monitored between J11 and J14 for Q3 and between J12 and J14 for Q4. All 16 pins of the FAN7688 can easily be probed at J18-J36 and there are five secondary side ground pins (J14, J26-7, J35-6). In summary, the EVB allows ease of probing at the signals most important for understanding the FAN7688 operation and allows additional board space for ease of soldering external components or circuit modifications.

2.1. Photographs

Figure 2. Top View, $163 \mathrm{~mm} \times 89 \mathrm{~mm}$

Figure 3. Side View, Cross Section, 30 mm

Figure 4. Bottom View, $163 \mathrm{~mm} \times 89 \mathrm{~mm}$

3. Specifications

The evaluation board has been designed and optimized for the conditions in Table 1.
Table 1. Electrical and Mechanical Specifications

Parameter	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	300	400	450	$\mathrm{V}_{\text {DC }}$
Vout	12.4	12.5	12.6	$V_{\text {DC }}$
lout	0		20	A
Pout_max			250	W
$\mathrm{F}_{\text {RES }} \mathrm{V}_{\text {IN }}=375 \mathrm{~V}$		105		kHz
$f_{\text {PWm }}$		250		kHz
$\begin{gathered} \mathrm{f}_{\text {SW(PFM }} \\ 300 \mathrm{~V}<\mathrm{V}_{\text {IN }}<450 \mathrm{~V} \end{gathered}$	80		140	kHz
$\mathrm{SR}_{\text {SHRINK }}$ 10\% Pout_max		25		W
SR $_{\text {Enable }}$ 25\% Pout_max		60		W
Iout_ocp Below Res $\mathrm{V}_{\text {IN }}=300 \mathrm{~V}$			22	A
lout_ocp Above Res $\mathrm{V}_{\mathrm{IN}}=425 \mathrm{~V}$			30	A
tss $400 \mathrm{~V}, 20 \mathrm{~A}$		55	60	ms
thu $400 \mathrm{~V}, 20 \mathrm{~A}$	16	75		ms
$\begin{gathered} \text { П_400 V } \\ \text { Pout=50 W } \\ \text { 20\% Pout_MAX } \end{gathered}$		95		\%
$\begin{gathered} \text { П_400 V } \\ \text { Pout=125 W } \\ 50 \% \text { Pout_MAX } \end{gathered}$		97		\%
$\begin{gathered} \text { П_400V } \\ \text { Pout }=250 \mathrm{~W} \\ 100 \% \text { Pout_MAX } \end{gathered}$		96		\%
Mechanical and Thermal				
Height			25 mm	
θ_{Jc} Use of Fan for lout>20 A			$80^{\circ} \mathrm{C}$	

4. Test Procedure

Before applying power to the FEBFAN7688_I00250A EVB; the DC bias supply voltage, DC source input voltage and DC electronic load should be connected to the board as shown in Figure 5. Optionally a Digital Volt Meter (DVM1) (set to measure DC voltage) can be connected to J 7 and J26 to measure the output voltage and a second DVM (DVM2, set to measure $\leq 2.5 \mathrm{~V}_{\mathrm{DC}}$) can be connected across an external current sensing shunt $\left(\mathrm{R}_{\text {SHUNT }}=100 \mathrm{~m} \Omega\right.$) to measure DC output current. Note that most ammeter settings are limited to $10 \mathrm{~A}_{\mathrm{DC}}$. Measuring the DC output current using a direct connection into a DVM ammeter can damage the DVM and/or blow the fuse.

4.1. Safety Precautions

The FEBFAN7688_I00250A EVB operates from a high voltage DC supply and the bulk input capacitor stores significant charge. Please be extra careful when probing and handling the module and observe the following safety precautions:

- Start with a clean working surface, clear of any conductive material.
- Never probe or move a probe on the EVB while the DC supply voltage is present.
- Ensure the input and output capacitors are fully discharged before disconnecting the test leads.

Power-On Procedure

1. Connect an electronic load ($12.5 \mathrm{~V}, 0-30 \mathrm{~A}$) to J 6 and J 15 . Set the electronic load to Constant Current (CC) with an initial setting of $0-1 \mathrm{~A}$.
2. Connect DVM1to Kelvin connections, J7 and J26.
3. As shown in Figure 5, connect a resistive shunt in series with the electronic load + or electronic load -. If efficiency is not being measured, the shunt can be omitted.
4. Connect DVM2 across the resistive shunt.
5. Connect a 400 V , DC power supply ($300 \sim 450 \mathrm{~V}$) to J 9 , pins 1 and 3 .
6. Connect an optional power meter between the $400 \mathrm{~V}, \mathrm{DC}$ power supply and J9. If a power meter is not available, 2 DVMs can also be used to measure input current and input voltage.
7. Connect a 12 V bias DC power supply to J16, pins 1 and 2 .
8. Set the input voltage source to 400 V and turn on the input voltage source.
9. Set the electronic load to draw 1 A of CC and turn on the electronic load.
10. Set the 12 V bias DC power supply to 12 V and turn on the bias power supply.
11. Verify the output voltage reading on DVM1 is now 12.5 V .
12. Vary the load current $(0 \sim 20 \mathrm{~A})$ as desired and verify normal output voltage regulation.
13. Prolonged operation near or above 20 A requires use of fan.
14. Vary the input voltage as desired ($300 \mathrm{~V} \sim 450 \mathrm{~V}$) and verify normal output voltage regulation.

Figure 5. Recommended EVB Test Configuration
All efficiency data shown was taken using the test set up shown in Figure 5.

Power-Off Procedure

1. Make sure the electronic load is ON and set to draw at least 5 A of CC .
2. Disconnect (shutdown) the 400 V DC supply voltage.
3. Disconnect (shutdown) the 12 V bias DC power supply.
4. Disconnect (shutdown) DC electronic load last to ensure the output capacitors are fully discharged before handling the evaluation module.
5. Verify that DVM1 reads 0 V .
6. Verify that the power meter (or DVM measuring input voltage) reads 0 V . If not, wait until the input capacitor (C 1) is fully discharged or manually discharge C 1 using an appropriate sized low value ($\sim 200 \Omega$) power resistor ($>10 \mathrm{~W}$).

5. Schematic

Figure 6. Evaluation Board Schematic

6. List of Test Points

Table 2. List of Test Points

Test Point	Name	Description
J5	GD	Primary upper MOSFET, Q1, floating gate
J7	+OUT	+12.5 V output Kelvin sense
J8	+Loop	Network analyzer perturbation loop injection +
J10	-Loop	Network analyzer perturbation loop injection -
J11	GD	SR, Q3, gate, secondary ground referenced
J12	GD	SR, Q4, gate, secondary ground referenced
J13	GD	Primary lower MOSFET, Q1, gate, primary ground referenced
J14	GND	Secondary ground, use for J11-2 gate drive
J17	PRI GND	Primary ground, use for J 13 gate drive
J18	CS	FAN7688 CS pin, current sensing for OCP
J19	ICS	FAN7688 ICS pin, integrated current sense for charge control
J20	SS	FAN7688 SS pin, soft-start
J21	COMP	FAN7688 COMP pin, error amplifier output
J22	FB	FAN7688 FB pin, divided down sensed output voltage
J23	FMIN	FAN7688 FMIN pin, minimum frequency setting
J24	PWMS	FAN7688 PWMS pin, PWM entry point
J25	5VB	FAN7688 5VB pin, 5 V reference
J26	GND	Secondary ground, +12.5 V output return Kelvin sense
J27	GND	Secondary ground
J28	VDD	FAN7688 VDD pin, VDD bias
J29	PROUT1	FAN7688 PROUT1 pin, PROUT1 gate drive
J30	PROUT2	FAN7688 PROUT2 pin, PROUT2 gate drive
J31	SROUT1	FAN7688 SROUT1 pin, SROUT1 gate drive
J32	SROUT2	FAN7688 SROUT2 pin, SROUT2 gate drive
J33	SR1DS	FAN7688 SR1DS pin, SR, Q3, drain-to-source sense
J34	RDT	FAN7688 RDT pin, PROUT and SROUT dead time setting
J35	GND	Secondary ground
J36	GND	Secondary ground
R4	R4	Option - remove R4, install primary drain current loop
R5	R5	Option - remove R5, install secondary AC current loop

7. Transformer Specifications

7.1. LLC Power Transformer

760895731 from Wurth Elektronik (www.we-online.com) is a LLC transformer orderable from Digikey. A split bobbin is used to incorporate the resonant inductance (leakage inductance) and magnetizing inductance into a single magnetic component.

- Core: ETD44 ($\mathrm{A}_{\mathrm{e}}=172 \mathrm{~mm}^{2}$)
- Bobbin: 16 pin TH
- Magnetizing Inductance : $475 \mu \mathrm{H}, \pm 10 \%$
- Leakage Inductance: $100 \mu \mathrm{H}, \pm 10 \%$

Figure 7. LLC Power Transformer (T1) in the Evaluation Board

Figure 8. Wurth 760895731 Mechanical Drawing (dimensions in mm)
Table 3. Wurth 760895731 Transformer Electrical Specifications

Properties	Test conditions		Value	Unit	Tol.
Inductance	$100 \mathrm{kHz} / 100 \mathrm{mV}$	L	475	$\mu \mathrm{H}$	$\pm 10 \%$
Turns ratio		n	$35: 2: 2: 3$		$\pm 3 \%$
Saturation current	$\|\Delta \mathrm{L} / \mathrm{L}\|<20 \%$	$\mathrm{I}_{\text {sat }}$	5.0	A	typ.
DC Resistance 1	$@ 20^{\circ} \mathrm{C}$	$\mathrm{R}_{\mathrm{DC} 1}$	128	$\mathrm{~m} \Omega$	max.
DC Resistance 2	$@ 20^{\circ} \mathrm{C}$	$\mathrm{R}_{\mathrm{DC} 2}$	4.0	$\mathrm{~m} \Omega$	max.
DC Resistance 3	$@ 20^{\circ} \mathrm{C}$	R_{DC}	4.0	$\mathrm{~m} \Omega$	max.
DC Resistance 4	$@ 20^{\circ} \mathrm{C}$	R_{DC}	192	$\mathrm{~m} \Omega$	max.
Leakage inductance	$100 \mathrm{kHz} / 100 \mathrm{mV}$	L_{S}	100	$\mu \mathrm{H}$	$\pm 10 \%$
Insulation test voltage	$\mathrm{W} 1,4=>\mathrm{W} 2,3$	U_{T}	4000	$\mathrm{~V}(\mathrm{AC})$	

7.2. Current Sense Transformer

RL-10950 from Renco Electronics (www.rencousa.com) is a custom designed current sense transformer (CT). Most "off-the-shelf" CTs have primary to secondary isolation of $<1000 \mathrm{~V}$ because they are not intended to operate across the isolation barrier. The RL10950 is a $1: 50 \mathrm{CT}$, specifically designed with 2500 V primary to secondary isolation which makes it more suitable for applcations such as the FAN7688 where the controller is on the secondary side and current sensing is coming from the primary side.

- Core: EP7 ($\mathrm{A}_{\mathrm{e}}=9 \mathrm{~mm}^{2}$)
- Bobbin: 16 pin TH
- Magnetizing Inductance : $2.75 \mathrm{mH},+40 \% /-20 \%$

Figure 9. Current Sense Transformer (T2) in the Evaluation Board

Figure 10. Renco RL-10950 Mechanical Drawing (dimensions in inches)

Table 4. RL-10950 Transformer Electrical Specifications

Parameter	Test Conditions	Ref,	Value	Unit	Tolerance
Inductance	$100 \mathrm{kHz}, 0,1 \mathrm{~V}_{\mathrm{AC}}$	L	2.75	mH	$+40 \% /-20 \%$
Turns Ratio			$1: 50$		
DC Resistance 1	Pins $1-2, @ 25^{\circ} \mathrm{C}$	$\mathrm{R}_{\mathrm{DC}(1-2)}$	7.5	$\mathrm{~m} \Omega$	$\pm 25 \%$
DC Resistance 2	Pins 5-4, @25 $5^{\circ} \mathrm{C}$	$\mathrm{R}_{\mathrm{DC}(5-4)}$	1.15	Ω	Max.
Isolation	$2500 \mathrm{~V}_{\mathrm{AC}} @ 60 \mathrm{~Hz}$ for 2s, Pins 1-5		2500	$\mathrm{~V}_{\mathrm{AC}}$	Min.

8. Four-Layer PCB and Assembly Images

Figure 11. Layer 1 - Top Assembly Layer

Figure 12. Layer 1 - Top Copper Layer

Figure 13. Layer 2 - Internal Copper Layer

Figure 14. Layer 3 - Internal Copper Layer

Figure 15. Layer 4 - Bottom Copper Layer

Figure 16. Layer 4 - Bottom Assembly Layer

9. Bill of Materials (BOM)

Table 5. Bill of Materials

Item	Qty.	Reference	Value	Part Number	Description	Manufacturer	Package
1	1	C1	$150 \mu \mathrm{~F}$	450BXW150MEFC18X45	Cap, Alum, 450 V, 20\%	Rubycon	Thru-Hole
2	4	C2-3, C7-8	$1800 \mu \mathrm{~F}$	UHN1C182MPD	Cap, Alum, $16 \mathrm{~V}, 20 \%$	Nichicon	Thru-Hole
3	7	$\begin{aligned} & \text { C4-6, C12, } \\ & \text { C15, C21, } \\ & \text { C25 } \end{aligned}$	100 nF		CAP, SMD, CERAMIC, 25 V , X7R	STD	805
4	1	C9	33 pF		CAP, SMD, CERAMIC, $25 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}$	STD	805
5	0	C10	DNI		CAP, SMD, CERAMIC	STD	805
6	1	C11	22 nF	ECW-H8223HA	Cap, 800VDC, Metal Poly Film, 3\%	Panasonic	Radial
7	3	$\begin{aligned} & \mathrm{C} 13, \mathrm{C} 20, \\ & \mathrm{C} 24 \end{aligned}$	$10 \mu \mathrm{~F}$		CAP, SMD, CERAMIC, 25 V, X7R	STD	1206
8	1	C14	$22 \mu \mathrm{~F}$	EEA-GA1E220B	Cap, Alum, $25 \mathrm{~V}, 20 \%$	Panasonic	Axial
9	1	C16	150 pF		CAP, SMD, CERAMIC, $25 \mathrm{~V}, \mathrm{X7R}$	STD	805
10	1	C17	1.5 nF		CAP, SMD, CERAMIC, $25 \mathrm{~V}, \mathrm{X7R}$	STD	805
11	1	C18	820 nF		CAP, SMD, CERAMIC, 25 V, X7R	STD	805
12	1	C19	1 nF		CAP, SMD, CERAMIC, 25 V, X7R	STD	805
13	1	C22	100 pF		CAP, SMD, CERAMIC, $25 \mathrm{~V}, \mathrm{X7R}$	STD	805
14	1	C23	470 pF		CAP, SMD, CERAMIC, $25 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}$	STD	805
15	2	D1, D7		MMSD4148	Diode, $200 \mathrm{~mA}, 100 \mathrm{~V}$, Signal Diode	Fairchild	SOD-123
16	4	D2-4, D8		MBR0540	Diode, Schottky, 40 V, 500 mA	Fairchild	SOD-123
17	2	D5-6		SS24	Diode, Schottky, 40 V, $2 \mathrm{~A}$	Fairchild	SMB
18	28	$\begin{aligned} & \mathrm{J} 5, \mathrm{~J} 7-8, \\ & \mathrm{~J} 10-14, \\ & \mathrm{~J} 17-36 \end{aligned}$		3103-2-00-21-00-00-08-0	Test pin, Gold, 40 mil	Mill-Max	Thru-Hole
19	2	J6, J15		7701	Terminal, 15 A, Vertical, PC mount	Keystone	Thru-Hole
20	1	J9		ED100/3DS	Header, Vert. 3 pin, 5 mm Spacing	OST	Thru-Hole
21	1	J16		OSTTA024163	Header, 2 pin, 100 mil Spacing, 15 A	OST	Thru-Hole
22	2	Q1-2		FCB20N60FTM	$\begin{aligned} & \text { MOSFE, N-CH, } 600 \mathrm{~V} \text {, } \\ & 20 \mathrm{~A}, 190 \mathrm{~m} \mathrm{\Omega} \end{aligned}$	Fairchild	D2PAK
23	2	Q3-4		FDB9406_F085	$\begin{aligned} & \text { MOSFE, N-CH, } 40 \mathrm{~V} \text {, } \\ & 110 \mathrm{~A}, 1.8 \mathrm{~m} \Omega \end{aligned}$	Fairchild	D2PAK
24	2	Q5-6		ZXTP07040DFF	Transistor, PNP, -40 V, -3 A	Diodes Inc.	SOT-23
© 2015 Fairchild Semiconductor Corporation							

FAIRCHILロ

Item	Qty.	Reference	Value	Part Number	Description	Manufacturer	Package
25	4	R1, R10-12	4.99Ω		RES, SMD, 1/4W	STD	1206
26	2	R2 ,R18	309Ω		RES, SMD, 1/8W	STD	805
27	4	$\begin{aligned} & \text { R3, R13, } \\ & \text { R15, R19 } \end{aligned}$	$20 \mathrm{k} \Omega$		RES, SMD, 1/8W	STD	805
28	1	R4	0Ω		RES, SMD, 1/2W	STD	2010
29	1	R5	0Ω	12250000ZOEG	RES, SMD, 1W	Vishay	2512W
30	1	R6	20Ω		RES, SMD, 1/8W	STD	805
31	2	R7, R24	$15 \mathrm{k} \Omega$		RES, SMD, 1/8W	STD	805
32	1	R8	$8.06 \mathrm{k} \Omega$		RES, SMD, 1/8W	STD	805
33	1	R9	0Ω		RES, SMD, 1/8W	STD	805
34	1	R14	$2.74 \mathrm{k} \Omega$		RES, SMD, 1/8W	STD	805
35	1	R16	$21.5 \mathrm{k} \Omega$		RES, SMD, 1/8W	STD	805
36	1	R17	$2.1 \mathrm{k} \Omega$		RES, SMD, 1/8W	STD	805
37	1	R20	$13 \mathrm{k} \Omega$		RES, SMD, 1/8W	STD	805
38	1	R21	69.8Ω		RES, SMD, 1/8W	STD	805
39	1	R22	30.1Ω		RES, SMD, 1/8W	STD	805
40	0	R23	DNI		RES, SMD, 1/8W	STD	805
41	1	R25	$100 \mathrm{k} \Omega$		RES, SMD, 1/8W	STD	805
42	1	R26	3.3Ω		RES, SMD, 1/4W	STD	1206
43	1	R27	$200 \mathrm{k} \Omega$		RES, SMD, 1/8W	STD	805
44	1	R28	$43.2 \mathrm{k} \Omega$		RES, SMD, 1/8W	STD	805
45	2	R29-30	2.49Ω		RES, SMD, 1/4W	STD	1206
46	1	T1		760895731	$\begin{aligned} & \text { XFMR, LLC, } 475 \mu \mathrm{H}, \\ & 100 \mu \mathrm{H} \end{aligned}$	Wurth Elektronik	Thru-Hole
47	1	T2		RL-10950	XFMR, CT, 1:50, 35 A	Renco	SMD
48	1	T3		P0584	XFMR, Gate Drive, 1:1:1, $450 \mu \mathrm{H}$	Pulse	Thru-Hole
49	1	U1		FAN7688	LLC Resonant PFM Controller	Fairchild	SOIC- 16DW
50	2	U2-3		FAN3225C	Driver, Low-Side, HighSpeed, 4 A	Fairchild	SOIC-8
51	1	PWB		FEBFAN7688_100250A	PWB, 4-Layer, FR4, 0.062"	Custom	N/A
52	2	Sleeving,C1 HV leads		TFT20018 NA005	$\begin{aligned} & 1.02 \mathrm{~mm} \times 1.78 \mathrm{~mm} \times \\ & 13 \mathrm{~mm} \text { (IDxODxL) } \end{aligned}$	Alpha Wire	N/A
53	1	N/A			Silicone adhesive bonding for C 1		N/A
54	4	N/A		8441B	Hex Standoff, 6-32, Nylon, 3/8"	Keystone	Nylon
55	4	N/A		NY PMS 6320038 PH	Machine Screw, Nylon, $6-32 \times 3 / 8 "$	B\&F Fastener	Nylon

Notes:

1. $\mathrm{STD}=$ Standard Components
2. $\mathrm{DNI}=$ Do Not Install

10. Test Data

The following section shows measured wave forms, efficiency, control loop and thermal data for the EVB.

10.1. Startup

Figure 17 and Figure 18 show the monotonic soft-start operation at $400 \mathrm{~V}_{\mathrm{DC}}$ line for fullload and min-load condition, respectively.
 (2 V/div), CH4: Output Voltage (10V/div), Time ($20 \mathrm{~ms} /$ div)

Figure 17. Full-Load (20 A) Startup at $400 \mathrm{~V}_{\mathrm{Dc}}$, $\mathrm{tss}^{(S o f t-s t a r t)}=53 \mathrm{~ms}$

CH1: COMP Voltage (2 V/div), CH2: Soft-start Voltage ($2 \mathrm{~V} / \mathrm{div}$), CH3: Feedback Voltage (2 V/div), CH4: Output Voltage (10 V/div), Time ($20 \mathrm{~ms} / \mathrm{div}$)

Figure 18. No-Load (0 A) Startup at 400 VD, t_{ss} (Soft-start) $=55 \mathrm{~ms}$

Figure 19 shows the startup operation at $400 \mathrm{~V}_{\mathrm{DC}}$ for full-load. The primary drain current shows no current overshoot. No overshoot is observed for full load startup or minimum load startup. Figure 20 is captured 14 ms after startup is initiated. A frequency tracking function was used to show PROUT1 frequency variation from the initial frequency of 224 kHz (PWM mode) to steady state frequency (resonance) of 105 kHz (PFM mode). The frequency transition is smooth and shows no signs of oscillation or abnormal variation.

CH1: COMP Voltage ($2 \mathrm{~V} / \mathrm{div}$), CH2: Soft-start Voltage ($1 \mathrm{~V} / \mathrm{div}$), CH3: Feedback Voltage ($1 \mathrm{~V} / \mathrm{div}$), CH4: Drain Current (1 Adiv), Time ($20 \mathrm{~ms} /$ div)
Figure 19. Full-Load (20 A) Startup at $400 \mathrm{~V}_{\mathrm{Dc}}$, Primary Drain Current, $\mathrm{I}_{\mathrm{R} 4}$

CH1: PROUT1 (20 V/div), CH2: PROUT2 (20 V/div), CH3: COMP Voltage ($5 \mathrm{~V} /$ div),
CH4: Resonant Current (2 Addiv), PROUT1 Freq Track ($50 \mathrm{kHz} /$ div), Time ($5 \mathrm{~ms} /$ div)
Figure 20. Full-Load (20 A) Startup at $375 \mathrm{~V}_{\mathrm{DC}}$, Frequency Track, $105 \mathrm{kHz}<\mathrm{F}_{\text {prout }}<240 \mathrm{kHz}$

10.2. Hold-Up

Hold-up time is measured at full load from the time that VIN is removed until VOUT drops out of regulation. The feedback voltage, VFB, is proportional to VOUT and as shown in Figure 21, stays in regulation for 77 ms for $287 \mathrm{~V}_{\mathrm{DC}}<\mathrm{VIN}<400 \mathrm{~V}_{\mathrm{DC}}$. As VIN is decreasing, the sensed primary ICS current, VICS, is increasing. Also during this time, the converter operation transitions from above resonance to below resonance. The FAN7688 ICS voltage threshold limit shifts accordingly from 1.2 V (above resonance) to 1.45 (below resonance). This shift in ICS voltage threshold permits operation down to a lower VIN level without causing an overload limit, thus increasing the amount of available hold-up time.

CH1: COMP Voltage (2 V/div), CH2: Feedback Voltage (1 V/div), CH3: ICS Voltage (1 V/div), CH4: Input Voltage ($100 \mathrm{~V} / \mathrm{div}$), Time ($20 \mathrm{~ms} / \mathrm{div}$)

Figure 21. Full-Load (20 A), VIN=400 VDC, Hold-Up Time, $\mathrm{t}_{\mathrm{H}}=77 \mathrm{~ms}$

10.3. Steady-State Operation

Figure 22 through Figure 25 shows the full load, switching frequency variation for $300 \mathrm{~V}_{\mathrm{DC}}<\mathrm{VIN}<450 \mathrm{~V}_{\mathrm{DC}}$.

CH1: PROUT1 (10 V/div), CH2: PROUT2 (10 V/div), CH3: Feedback Voltage (2 V/div), CH4: COMP Voltage (2 V/div), Time ($5 \mu \mathrm{~s} / \mathrm{div}$)

Figure 22. PWM Burst Mode, lout=250 mA, VIN=400 V $\mathbf{D c}, \mathrm{f}_{\text {Pwm }}=240 \mathrm{kHz}$

CH1: PROUT1 (20 V/div), CH2: PROUT2 (20 V/div), CH3: ICS Voltage (1 V/div), CH4: CS Voltage ($2 \mathrm{~V} / \mathrm{div}$), Time ($5 \mu \mathrm{~s} / \mathrm{div}$)
Figure 23. PFM Mode, at Resonance, Iout=20 A, VIN=375 VDC, $\mathrm{f}_{\mathrm{RES}}=105 \mathrm{kHz}$

PROUT1
PROUT2

VICS
vCS

CH1: PROUT1 (20 V/div), CH2: PROUT2 (20V/div), CH3: ICS Voltage ($1 \mathrm{~V} / \mathrm{div}$), CH4: CS Voltage ($2 \mathrm{~V} / \mathrm{div}$), Time ($5 \mu \mathrm{~s} / \mathrm{div}$)
Figure 24. PFM Mode, Below Resonance, Iout $=20 \mathrm{~A}, \mathrm{VIN}=300 \mathrm{~V}$ D, $\mathrm{F}=80 \mathrm{kHz}$

PROUT1

PROUT2

VICS

VCS

CH1: PROUT1 (20 V/div), CH2: PROUT2 (20 V/div), CH3: ICS Voltage (1 V/div), CH4: CS Voltage ($2 \mathrm{~V} / \mathrm{div}$), Time ($5 \mu \mathrm{~s} /$ div)
Figure 25. PFM Mode, Above Resonance, $\mathrm{I}_{\mathrm{out}}=\mathbf{2 0} \mathrm{A}, \mathrm{VIN}=450 \mathrm{~V}$ Dc, $\mathrm{F}=136 \mathrm{kHz}$

Figure 26 shows the transition between PWM burst mode and PFM mode as a current load step from 250 mA to 5 A is introduced. Figure 27 is a zoom showing the smooth transition into the start of PFM mode. The duty cycle increases smoothly as the COMP voltage is increasing.

CH1: PROUT1 (10 V/div), CH2: PROUT2 (10 V/div), CH3: Feedback Voltage ($2 \mathrm{~V} / \mathrm{div}$), CH4: COMP Voltage ($2 \mathrm{~V} / \mathrm{div}$), Time ($200 \mu \mathrm{~s} / \mathrm{div}$)
Figure 26. PWM Burst to PFM Mode Change, $\mathrm{I}_{\text {out }}=250 \mathrm{~mA}$ to 5 A Step, $\mathrm{VIN}=400 \mathrm{~V}_{\mathrm{DC}}$

CH1: PROUT1 (10 V/div), CH2: PROUT2 (10 V/div), CH3: Feedback Voltage (2 V/div), CH4: COMP Voltage ($2 \mathrm{~V} / \mathrm{div}$), Time ($200 \mu \mathrm{~s} / \mathrm{div}$), Zoom Time ($20 \mu \mathrm{~s} /$ div)
Figure 27. PWM Burst to PFM Mode Change, lout $=250 \mathrm{~mA}$ to 5 A Step, $\mathrm{VIN}=400 \mathrm{~V}_{\mathrm{DC}}$

Figure 28 shows the maximum load current (IOUT=29 A) just before over-current limit when operating above resonance where the VICS threshold limit ($\mathrm{V}_{\mathrm{OCL}}$) is 1.2 V . Figure 29 shows the maximum load current (IOUT=21 A) just before over-current limit when operating below resonance where the VICS threshold limit ($\mathrm{V}_{\mathrm{OCL} 2}$) is 1.45 V .

CH1: PROUT1 (20 V/div), CH2: PROUT2 (20 V/div), CH3: ICS Voltage (1 V/div), CH4: CS Voltage ($2 \mathrm{~V} / \mathrm{div}$), Time ($20 \mu \mathrm{~s} /$ div)

Figure 28. Just Before Over-Current Limit, Above Resonance, Iout=29 A, $\mathrm{VIN}=400 \mathrm{~V} \mathrm{D}, \mathrm{VICS}=1.2 \mathrm{~V}$

CH1: PROUT1 (20 V/div), CH2: PROUT2 (20 V/div), CH3: ICS Voltage (1 V/div), CH4: CS Voltage (2 V/div), Time ($20 \mu \mathrm{~s} /$ div)
Figure 29. Just Before Over-Current Limit, Below Resonance, Iout=21 A, VIN=300 VDC, VICS=1.45 V

The maximum, full load, output AC ripple voltage is about $500 \mathrm{mV}_{\mathrm{PP}}$ as shown in Figure 30. Setting the load current to the minimum value that will sustain PFM operation (1A) at $400 \mathrm{~V}_{\mathrm{DC}}$ input, the output AC ripple voltage is measured as 100 mVpp , and is shown in Figure 31.

VOUT_RIPPLE

CH1: Output AC Ripple Voltage ($500 \mathrm{mV} /$ div), Time ($5 \mu \mathrm{~s} /$ div)
Figure 30. Output, AC Ripple Voltage, Full Load, lout=20 A, VIN=400 VDC, Vout_pp=500 mV $\mathrm{V}_{\text {PP }}$

Figure 31. Output, AC Ripple Voltage, PFM, $\mathrm{I}_{\mathrm{OUT}}=1 \mathrm{~A}, \mathrm{VIN}=400 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{OUT}}$ _p $=100 \mathrm{mV} \mathrm{V}_{\text {PP }}$

10.4. Zero-Voltage Switching (ZVS)

Using traditional PWM mode operation, ZVS is lost on both edges. However, the unique burst mode, PWM pattern of the FAN7688, highlighted in Figure 22, allows for partial ZVS (turn-off only), as shown in Figure 32. High line, light load operation is the worst case condition where ZVS could possibly be lost. Figure 33 and Figure 34 shows full ZVS during PFM mode at turn-on and turn-off for $400 \mathrm{~V}_{\mathrm{DC}}, 1 \mathrm{~A}<$ IOUT<20 A operation and Figure 35 shows that ZVS is fully retained down to $300 \mathrm{~V}_{\mathrm{DC}}$ input.

CH1: VDS_Q1 (200 V/div), CH2: VGS_Q1 (5 V/div), CH3: VDS_Q1(zoom) (100 V/div), CH4: VGS_Q1(zoom) (2 V/div), Time ($50 \mu \mathrm{~s} /$ div), Zoom Time ($500 \mathrm{~ns} /$ div)

Figure 32. Turn-Off ZVS Only, PWM Burst, lout=120 mA, VIN=400 VDC

VDS_Q1

VGS_Q1

CH1: VDS_Q1 (200 V/div), CH2: VGS_Q1 (5 V/div), CH3: VDS_Q1(zoom) ($100 \mathrm{~V} / \mathrm{div}$), CH4: VGS_Q1(zoom) (5 V/div), Time ($100 \mu \mathrm{~s} / \mathrm{div}$), Zoom Time ($1 \mu \mathrm{~s} / \mathrm{div}$)

Figure 33. Full ZVS, PFM Light- Load, lout=1 A, VIN=400 VDC

Figure 34. Full ZVS, PFM Full Load, Iout=20 A, VIN=400 VDC

Figure 35. Full ZVS, PFM Full Load, lout=20 A, VIN=300 VDC

10.5. SR Performance

Figure 36 shows the moment both SRs initially turn on in SHRINK mode as a result of a load step from 0 A to 2 A. Figure 37 highlights the smooth transition from SR SHRINK to full SR ENABLE mode as a result of a 0 A to 20 A load step.

CH1: SROUT1 (10 V/div), CH2: SROUT2 (10 V/div), CH3: ICS Voltage ($200 \mathrm{mV} / \mathrm{div}$), CH 4 : Primary Resonant Current ($1 \mathrm{~A} / \mathrm{div}$), Time ($10 \mu \mathrm{~s} / \mathrm{div}$)

Figure 36. SR Shrink, Iout=0 A to 2 A Step, VIN=400 VDC

CH1: SROUT1 (10 V/div), CH2: SROUT2 (10 V/div), CH3: ICS Voltage ($200 \mathrm{mV} / \mathrm{div}$), CH4: COMP Voltage ($1 \mathrm{~V} / \mathrm{div}$), Time ($500 \mu \mathrm{~s} /$ div), Zoom Time ($5 \mu \mathrm{~s} / \mathrm{div}$)

Figure 37. Shrink to SR EN Mode, Iout=0 A to 20 A Step, VIN=400 VDC

During a 0 A to 20 A current load step, the converter is initially operating in PWM burst mode as indicated by PROUT1 in Figure 38. In response to the 20 A load step, the COMP voltage increases and PROUT1 transitions to PFM mode. SROUT1 is enabled according to VICS (not shown). The VOUT deviation is about 50 mV . Figure 39 shows the SR behavior as a result of a 20 A to 0 A current load step. The VOUT deviation is less than 50 mV and PROUT1 burst mode occurs beyond the 1 ms time scale shown.

CH1: PROUT1 (10 V/div), CH2: SROUT1 (10 V/div),
CH3: Output Voltage (100 mV (AC)/div), CH4: COMP Voltage ($2 \mathrm{~V} /$ div), Time ($500 \mu \mathrm{~s} / \mathrm{div}$)
Figure 38. PWM Burst to PFM to SR Modes, lout=0 A to 20 A Step, VIN=400 VDC

CH1: PROUT1 (10 V/div), CH2: SROUT1 (10 V/div), CH3: Output Voltage (100 mV (AC)/div), CH4: COMP Voltage ($2 \mathrm{~V} / \mathrm{div}$), Time ($1 \mathrm{~ms} / \mathrm{div}$)
Figure 39. SR to PFM to PWM Burst Modes, $\mathrm{I}_{\mathrm{out}}=\mathbf{2 0} \mathrm{A}$ to 0 A Step, VIN=400 V_{DC}

10.6. PRDT and SRDT Timing

R28 ($43.2 \mathrm{k} \Omega$) and $\mathrm{C} 23(470 \mathrm{pF})$ are selected according to the desired dead times shown in the table (SRDT=225 ns, PRDT=350 ns) in the FAN7688 data sheet. During startup, the RDT pin charging time (1 V to 3 V) shown in Figure 41 , is used to determine the SR dead time. Similarly, the discharging time (3 V to 1 V) shown in Figure 40 is used to determine the PR dead time. As a result, a single pin (RDT, pin 9) is used to program the PR and SR dead times accordingly.

CH1: VDD Voltage (10V/div), CH2: 5VB Voltage (2 V/div), CH3: RDT Voltage ($2 \mathrm{~V} / \mathrm{div}$), Time ($20 \mu \mathrm{~s} /$ div), Zoom Time ($5 \mu \mathrm{~s} / \mathrm{div}$)
Figure 40. VRDT Measurement for PRDT (PROUT Dead Time), PRDT=11.5 $\boldsymbol{\mu \mathrm { s }} / \mathbf{3 2 = 3 5 9 \mathrm { ns }}$

VDD

V5VB
VRDT

CH1: VDD Voltage (10 V/div), CH2: 5VB Voltage (2 V/div), CH3: RDT Voltage (2 V/div), Time ($20 \mu \mathrm{~s} /$ div), Zoom Time ($5 \mu \mathrm{~s} / \mathrm{div}$)
Figure 41. VRDT Measurement for SRDT (SROUT Dead Time), SRDT=14 $\boldsymbol{\mu s} / \mathbf{6 4 = 2 1 9} \mathbf{n s}$

During PFM operation, the actual measured dead times between PROUT1 and PROUT2 are shown in Figure 42 and Figure 43 respectively. The measured dead times of 320 ns are within the expected 50 ns of acceptable error compared to 359 ns determined from Figure 40.

CH1: PROUT1 (10 V/div), CH2: PROUT2 (10 V/div), Time (5 $\mu \mathrm{s} / \mathrm{div}$), Zoom Time ($500 \mathrm{~ns} / \mathrm{div}$) Figure 42. PFM Mode, PROUT2-1 Measured Dead Time, Iout=10 A, VIN=400 VDc, PRDT2-1=321 ns

PROUT1
PROUT2

CH1: PROUT1 (10 V/div), CH2: PROUT2 (10 V/div), Time ($5 \mu \mathrm{~s} / \mathrm{div}$), Zoom Time ($500 \mathrm{~ns} / \mathrm{div}$)
Figure 43. PFM Mode, PROUT1-2 Measured Dead Time, Iout=10 A, VIN=400 VDC, PRDT1-2=320 ns

During PWM mode operation, the actual measured dead times between PROUT1 and PROUT2 are shown in Figure 44 and Figure 45 respectively. The measured dead time of 647 ns shown in Figure 45 is twice the measured value shown in Figure 42 and Figure 43. This "dead time doubling" function only occurs during PWM mode for the purpose of retaining "partial ZVS" (Figure 32) during light load PWM operation.

CH1: PROUT1 (10 V/div), CH2: PROUT2 (10 V/div), Time ($5 \mu \mathrm{~s} / \mathrm{div}$), Zoom Time ($1 \mu \mathrm{~s} / \mathrm{div}$)
Figure 44. PWM Burst Mode, PROUT2-1 Measured Dead Time, Iout=250 mA, $\mathrm{VIN}=400 \mathrm{~V}_{\mathrm{Dc}}$, PRDT2-1=2.6 $\mu \mathrm{s}$

CH1: PROUT1 ($10 \mathrm{~V} / \mathrm{div}$), CH2: PROUT2 ($10 \mathrm{~V} / \mathrm{div}$), Time ($5 \mathrm{\mu s} / \mathrm{div}$), Zoom Time ($1 \mu \mathrm{~s} /$ div)
Figure 45. PWM Burst Mode, PROUT1-2 Measured Dead Time, Iout=250 mA, $\mathrm{VIN}=400 \mathrm{~V}_{\mathrm{DC}}$, PRDT1-2=647 ns

During PFM, SR ENABLE operation, the actual measured dead times for SROUT1 and SROUT2 are shown in Figure 46 and Figure 47 respectively. The measured dead times of 210 ns and 224 ns are within the expected 50 n s of acceptable error compared to 219 ns determined from Figure 41.

CH1: SROUT1 (10 V/div), CH2: SROUT2 (10 V/div), CH3: SR1DS (5 V/div), CH4: SR Current (10 A/div), Time ($1 \mu \mathrm{~s} /$ div), Zoom Time ($100 \mathrm{~ns} /$ div)
Figure 46. PFM Mode, SROUT1 Measured Dead Time, lout=10 A, VIN=400 Vdc, SRDT1=210 ns

CH1: SROUT1 (10 V/div), CH2: SROUT2 (10 V/div), CH3: SR1DS (5 V/div), CH4: SR Current (10 A/div), Time ($1 \mu \mathrm{~s} /$ /div), Zoom Time ($100 \mathrm{~ns} /$ /div)
Figure 47. PFM Mode, SROUT2 Measured Dead Time, lout=10 A, VIN=400 Vdc, SRDT2=224 ns

10.7. Protection Functions

During startup, if the COMP voltage is saturated high $(4.2 \mathrm{~V})$ and the difference between the soft-start voltage and feedback voltage (VSS-VFB) is greater than 0 V but less than 1.2 V , when the soft-start voltage reaches 3.6 V , Overload Protection (OLP) is enabled, as shown in Figure 48. If VSS-VFB is greater than 1.2 V , regardless of the soft-start voltage, then Output Short Protection (OSP) is enabled, as shown in Figure 49.

PROUT1

VCOMP

VSS-VFB

CH1: COMP Voltage (5 V/div), CH2: PROUT1 (10 V/div), CH3: Feedback Voltage (2 V/div), CH4: Soft-Start Voltage ($2 \mathrm{~V} / \mathrm{div}$), VSS-VFB ($2 \mathrm{~V} /$ div), Time ($50 \mathrm{~ms} /$ div)

Figure 48. OLP, lout $=23 \mathrm{~A}, \mathrm{VIN}=350 \mathrm{~V}$ DC

CH1: COMP Voltage ($5 \mathrm{~V} / \mathrm{div}$), CH2: PROUT1 ($10 \mathrm{~V} /$ div), CH3: Feedback Voltage ($2 \mathrm{~V} /$ div), CH4: Soft-Start Voltage ($2 \mathrm{~V} / \mathrm{div}$), VSS-VFB ($2 \mathrm{~V} /$ div), Time ($100 \mathrm{~ms} /$ div)

Figure 49. OSP, Start with VDD only, $l_{\text {Out }}=0 \mathrm{~A}, \mathrm{VIN}=0 \mathrm{~V}_{\mathrm{DC}}$

If the ICS voltage reaches the 1.9 V threshold, Over-Current Protection (OCP) is triggered as shown in Figure 50 and Figure 51.

CH1: PROUT1 ($20 \mathrm{~V} /$ div), CH2: COMP Voltage ($5 \mathrm{~V} /$ div), CH 3 : ICS Voltage ($500 \mathrm{mV} / \mathrm{div}$), CH4: Output Voltage ($10 \mathrm{~V} /$ div), Time ($1 \mathrm{~ms} /$ div)

Figure 50. Above Resonance, OCP, Iout=10 A to $35 \mathrm{~A}, \mathrm{VIN}=400 \mathrm{~V}$ DC

CH1: PROUT1 (20 V/div), CH2: COMP Voltage ($5 \mathrm{~V} /$ div), CH3: ICS Voltage ($500 \mathrm{mV} /$ div),
CH4: Output Voltage ($10 \mathrm{~V} /$ div), Time ($1 \mathrm{~ms} /$ div)
Figure 51. Below Resonance, OCP, Iout=10 A to $35 \mathrm{~A}, \mathrm{VIN}=330 \mathrm{~V}$ DC

If the CS voltage reaches the 3.5 V threshold, a second level Over-Current Protection (OCP) ($\mathrm{V}_{\text {OCP2PN }}$) is triggered. The second level OCP is designed to protect the converter from catastrophic failures such as transformer saturation, MOSFET and/or gate drive failures or any type of short circuit failure. The waveform captured in Figure 52 was taken during a hard short applied to the converter output and shows the CS voltage crossing 3.5 V , while the ICS voltage remains below its corresponding 1.9 V threshold. As can be seen, the FAN7688 controller instantly responds by terminating the PROUT1 (and PROUT2, not shown), even in the middle of a single pulse.

CH1: PROUT1 (20 V/div), CH2: COMP Voltage (5 V/div), CH3: ICS Voltage ($500 \mathrm{mV} / \mathrm{div}$),
CH4: Output Voltage ($10 \mathrm{~V} / \mathrm{div}$), VSS-VFB (2 V/div), Time ($1 \mathrm{~ms} / \mathrm{div}$)
Figure 52. Above Resonance, Second Level OCP, Iout=10 A to Short Circuit, VIN=400 VDC

10.1. Efficiency

Figure 53 shows the measured efficiency verses load for VIN= 400 V . The peak efficiency is 97% at 50% maximum rated load and $>95 \%$ for $50 \mathrm{~W}<$ POUT<250 W. The EVB has been optimized for maximum efficiency around the 20% maximum load power point. As a result, the SRs are enabled in shrink mode at 10% load and are fully enabled at the 30% load condition. The red line shows the measured efficiency as the load is increased from 0 W to 250 W while the blue line shows measured efficiency when decreasing the load from 58 W (point where SR shrink begins when decreasing load) down to 10 W . The light load efficiency difference between the red and blue lines highlights the SR enable/disable hysteresis effect on efficiency. Measured efficiency test data is detailed in Table 6.

Figure 53. Efficiency vs. Load

Table 6. Measured Efficiency Data

$V_{\text {out }}$ (V_{DC})	$\begin{gathered} \mathrm{I}_{\text {OUT }} \\ \left(\mathrm{A}_{\mathrm{DC}}\right) \\ \hline \end{gathered}$	$\mathrm{P}_{\text {out }}$ (W)	$\mathrm{V}_{\text {IN }}\left(\mathrm{V}_{\mathrm{DC}}\right)$	$\begin{gathered} \mathbf{I}_{\mathrm{IN}} \\ \left(\mathrm{~A}_{\mathrm{DC}}\right) \\ \hline \end{gathered}$	$\mathrm{P}_{\text {IN }}(\mathrm{W})$	η	\%Max. Load	Mode	SR
LOW TO HIGH MEASUREMENTS (RED LINE IN Figure 53)									
12.497	1.01	12.62	400.00	0.04	14.80	85.3\%	5.1\%	PWM	NO SR
12.491	1.91	23.86	400.00	0.07	26.40	90.4\%	9.6\%	PFM	NO SR
12.491	2.01	25.11	400.00	0.07	27.20	92.3\%	10.1\%	PFM	SR SHRINK
12.49	3.00	37.47	400.00	0.10	39.60	94.6\%	15.0\%	PFM	SR SHRINK
12.489	4.01	50.08	400.00	0.13	52.80	94.9\%	20.1\%	PFM	SR SHRINK
12.488	5.01	62.56	400.00	0.16	65.60	95.4\%	25.1\%	PFM	SR SHRINK
12.488	6.01	75.05	400.00	0.19	77.60	96.7\%	30.1\%	PFM	SREN
12.486	7.01	87.53	400.00	0.23	90.40	96.8\%	35.1\%	PFM	SREN
12.483	8.01	99.99	400.00	0.26	103.20	96.9\%	40.1\%	PFM	SREN
12.482	9.01	112.34	400.00	0.29	116.00	97.0\%	45.1\%	PFM	SREN
12.482	10.01	124.82	400.00	0.32	128.80	97.0\%	50.1\%	PFM	SREN
12.48	11.00	137.28	400.00	0.35	141.60	96.9\%	55.1\%	PFM	SREN
12.479	12.00	149.75	400.00	0.39	154.80	96.7\%	60.1\%	PFM	SREN
12.479	13.00	162.23	400.00	0.42	167.60	96.8\%	65.1\%	PFM	SREN
12.477	14.00	174.68	400.00	0.45	180.80	96.6\%	70.1\%	PFM	SREN
12.476	15.00	187.14	400.00	0.49	194.00	96.5\%	75.1\%	PFM	SREN
12.475	16.00	199.60	400.00	0.52	206.80	96.5\%	80.1\%	PFM	SREN
12.474	17.00	212.06	400.00	0.55	220.00	96.4\%	85.0\%	PFM	SREN
12.473	18.00	224.51	400.00	0.58	233.20	96.3\%	90.0\%	PFM	SREN
12.471	19.00	236.95	400.00	0.62	246.40	96.2\%	95.0\%	PFM	SREN
12.467	20.00	249.34	400.00	0.65	260.00	95.9\%	100.0\%	PFM	SREN
12.467	21.00	261.81	400.00	0.68	273.20	95.8\%	105.0\%	PFM	SREN
12.465	22.00	274.23	400.00	0.72	286.40	95.8\%	110.0\%	PFM	SREN
12.462	23.01	286.75	400.00	0.75	300.40	95.5\%	115.0\%	PFM	SREN
12.461	24.01	299.19	400.00	0.79	314.00	95.3\%	120.0\%	PFM	SREN
12.458	25.01	311.57	400.00	0.82	327.60	95.1\%	125.0\%	PFM	SR EN

HIGH TO LOW MEASUREMENTS (BLUE LINE IN Figure 53)

12.476	4.64	57.89	400.00	0.15	60.40	95.8%	25.8%	PFM	SR SHRINK
12.478	4.26	53.16	400.00	0.14	55.60	95.6%	23.7%	PFM	SR SHRINK
12.479	4.01	50.04	400.00	0.13	52.40	95.5%	22.3%	PFM	SR SHRINK
12.479	3.75	46.80	399.90	0.12	49.19	95.1%	20.8%	PFM	SR SHRINK
12.48	3.50	43.68	399.90	0.12	45.99	95.0%	19.5%	PFM	SR SHRINK
12.482	3.26	40.69	399.90	0.11	42.79	95.1%	18.1%	PFM	SR SHRINK
12.482	3.01	37.57	399.90	0.10	39.59	94.9%	16.7%	PFM	SR SHRINK
12.483	2.75	34.33	399.90	0.09	36.39	94.3%	15.3%	PFM	SR SHRINK
12.483	2.5	31.21	399.90	0.08	33.19	94.0%	13.9%	PFM	SR SHRINK
12.484	2.25	28.09	399.90	0.08	29.99	93.7%	12.5%	PFM	SR SHRINK
12.484	2.01	25.09	399.90	0.07	26.79	93.7%	11.2%	PFM	SR SHRINK
12.485	1.75	21.85	399.90	0.06	23.59	92.6%	9.7%	PFM	SR SHRINK
12.486	1.50	18.73	399.90	0.05	20.39	91.8%	8.3%	PFM	SR SHRINK
12.486	1.25	15.61	399.90	0.04	17.20	90.8%	7.0%	PFM	SR SHRINK
12.486	1.01	12.61	399.90	0.04	14.00	90.1%	5.6%	PFM	SR SHRINK
12.487	0.76	9.49	399.90	0.03	10.80	87.9%	4.2%	PFM	SR SHRINK

Note:

3. Operating the converter at or above 20 A max. rated load (shaded region shown in Table 6) requires a fan blowing on the transformer and SR section of the EVB.

10.2. Output Voltage Load Regulation

Figure 54 shows the output voltage regulation as a function of varying load for $400 \mathrm{~V}_{\mathrm{DC}}$ input.

Figure 54. Output Voltage Regulation vs. Load

Table 7. Output Voltage Load Regulation

$\mathbf{V}_{\text {OUT(MIN) }}$ P $_{\text {out }}=\mathbf{2 5 0} \mathbf{~ W}$	V $_{\text {OUT(MAX) }}$ P $_{\text {out }}=\mathbf{0}$ W	\%Load Reg.
12.467 V	12.498 V	0.25%

$\%$ Load Reg $=\frac{V_{\text {OUT }(\text { MAX })}-V_{\text {OUT }(M I N)}}{V_{\text {OUT }(\text { MIN })}}$

10.3. Control to Output Measurements

Figure 55. Above Resonance, Max Load, Measured Gain \& Phase

Figure 56. Above Resonance, Min. Load, Measured Gain \& Phase

Table 8. Above Resonance, Control to Output Phase Margin, Gain Margin and Bandwidth

Above Resonance, $\mathbf{F}_{\mathbf{S}}>\mathbf{F}_{\mathbf{R}}(\mathbf{1 1 5} \mathbf{~ k H z}>\mathbf{1 0 5} \mathbf{~ k H z}), \mathbf{4 0 0} \mathbf{~ V}$			
	$\boldsymbol{\Phi}_{\mathbf{M}}$	$\mathbf{G}_{\mathbf{M}}$	$\mathbf{B W}$
Max. Load (20 A)	60°	-5 dB	15.9 kHz
Min. Load (1 A)	86°	-20 dB	4.6 kHz

Figure 57. Below Resonance, Max. Load, Measured Gain \& Phase

Figure 58. Below Resonance, Min. Load, Measured Gain \& Phase

Table 9. Below Resonance, Control to Output Phase Margin, Gain Margin and Bandwidth

Below Resonance, $\mathbf{f}_{\mathbf{S}}<\mathbf{f}_{\mathbf{R}}(\mathbf{8 0} \mathbf{~ k H z}<\mathbf{1 0 5} \mathbf{~ k H z}), \mathbf{3 0 0} \mathbf{~ V}$			
	$\boldsymbol{\Phi}_{\mathbf{M}}$	$\mathbf{G}_{\mathbf{M}}$	BW
Max. Load (20 A)	32°	-6 dB	11.8 kHz
Min. Load (1 A)	86°	-13 dB	7.5 kHz

10.4. Thermal Images

Thermal images of the top side of the EVB are shown while operating from $400 \mathrm{~V}_{\mathrm{DC}}$ (above resonance) at no load (PWM mode) in Figure 59 and maximum load in Figure 60. As mentioned in section 4.1 and illustrated in Figure 5, a fan is required for prolonged use when loading the converter near or above 20 A . R5 $\left(111^{\circ} \mathrm{C}\right)$ is the 0Ω jumper used to allow the insertion of a current loop for measuring AC output current but the culprit of the highest temperature is really the secondary winding of the LLC transformer, T1.

Figure 59. No Load, Above Resonance, 400 V, 0 A

Figure 60. Max. Load, Above Resonance, 400 V, 20 A

Thermal images of the top side of the EVB are shown operating from $300 \mathrm{~V}_{\mathrm{DC}}$ (below resonance) at no load (PWM mode) in Figure 61 and maximum load in Figure 62. As mentioned in section 4.1 and illustrated in Figure 5, a fan is required for prolonged use when loading the converter near or above 20 A . Recommendation for improvement would be to increase PCB copper at D1, R1 junction.

Figure 61. No Load, Below Resonance, 300 V, 0 A

Figure 62. Max. Load, Below Resonance, 300 V, 20 A

11. Ordering Information

Orderable Part Number	Description
FEBFAN7688_100250A	FAN7688, 400V to 12.5V, 250W Evaluation Board

12. Revision History

Date	Revision	Description
August 2015	0.0 .1	Initial release

WARNING AND DISCLAIMER

Replace components on the Evaluation Board only with those parts shown on the parts list (or Bill of Materials) in the Users' Guide. Contact an authorized Fairchild representative with any questions.

This board is intended to be used by certified professionals, in a lab environment, following proper safety procedures. Use at your own risk. The Evaluation board (or kit) is for demonstration purposes only and neither the Board nor this User's Guide constitute a sales contract or create any kind of warranty, whether express or implied, as to the applications or products involved. Fairchild warrantees that its products meet Fairchild's published specifications, but does not guarantee that its products work in any specific application. Fairchild reserves the right to make changes without notice to any products described herein to improve reliability, function, or design. Either the applicable sales contract signed by Fairchild and Buyer or, if no contract exists, Fairchild's standard Terms and Conditions on the back of Fairchild invoices, govern the terms of sale of the products described herein.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

EXPORT COMPLIANCE STATEMENT

These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations for the ultimate destination listed on the commercial invoice. Diversion contrary to U.S. law is prohibited.
U.S. origin products and products made with U.S. origin technology are subject to U.S Re-export laws. In the event of re-export, the user will be responsible to ensure the appropriate U.S. export regulations are followed.

