Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

General Description

The MAX14819 low-power, dual-channel, IO-Link ${ }^{\circledR}$ master transceiver with sensor/actuator power-supply controllers is fully compliant with the latest IO-Link and binary input standards and test specifications, IEC 61131-2, IEC 61131-9 SDCI, and IO-Link 1.1.2. This master transceiver also includes two auxiliary digital input (DI_) channels.
The MAX14819 is configurable to operate either with external UARTs or using the integrated framers on the IC.
To ease selection of microcontroller, the master transceiver features frame handlers with UARTs and FIFOs. These are designed to simplify time critical control of all IO-Link M-sequence frame types. The MAX14819 also features autonomous cycle timers, reducing the need for accurate controller timing. Integrated establish-communication sequencers also simplify wake-up management.

The MAX14819 integrates two low-power sensor supply controllers with advanced current limiting, reverse current-blocking, and reverse polarity protection capability to enable low-power robust solutions.

The MAX14819 is available in a 48-pin (7mm x 7mm) TQFN package and is specified over the extended $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.

Applications

- IO-Link Master Systems
- IO-Link Gateways

Benefits and Features

- Low-Power Architecture
- 1Ω (typ) Driver On-Resistance
- 1.9 mA (typ) Total Supply Current for 2 Channels
- Current Limiters with 15 mV Sense Voltage
- Integrated IO-Link Framer Eliminates Need for External UARTs
- Integrated Cycle Timer Relieves Microcontroller from Timing-Critical Tasks
- High Configurability and Integration Reduce SKUs
- Two Auxiliary Type 1/Type 3 Digital Inputs
- Supports NPN Sensors
- Dual 24 V Sensor Supply Controllers Include:
- Large Capacitive Load Charge Capability
- 2A and Higher Load Currents
- Integrated Protection Enables Robust Systems
- Reverse Polarity Protection on All Interface Pins
- Overvoltage Tolerance on All Interface Pins
- C/Q and DI Fully Compliant with IEC 61131-2
- C/Q Compliant with IO-Link 1.1.2
- Reverse Current Blocking on L+ and C/Q
- 65V Absolute Max Ratings for TVS Flexibility
- Glitch Filters for Improved Burst Resilience
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating Temperature Range

Ordering Information appears at end of data sheet.

IO-Link is a registered trademark of Profibus User Organization (PNO).

Typical Operating Circuit

THE MAX14819 IS A DUAL-CHANNEL MASTER TRANSCEIVER. ONLY ONE CHANNEL IS SHOWN HERE. OPERATED WITH INTERNAL IO-LINK FRAMER.

Functional Diagram

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

(All voltages referenced to GND, unless otherwise noted.)
REGEN......................... -0.3 V to the $\min \left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right.$ or $\left.+6 \mathrm{~V}\right)$
CQA, CQB... (VCC $-70 \mathrm{~V})$ to +65 V
DIA, DIB, L+A, L+B (VPM - 70V) to +65V
SN1A, SN1B..-0.3V to +65V
SN2A $\left(\mathrm{V}_{\text {SN1A }}-0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}_{\text {SN1A }}+0.3 \mathrm{~V}\right)$
SN2B ($\left.\mathrm{V}_{\text {SN1B }}-0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}_{\text {SN1B }}+0.3 \mathrm{~V}\right)$
G1A, G2A $\max \left(-0.3 \mathrm{~V},\left[\mathrm{~V}_{\text {SN1A }}-14 \mathrm{~V}\right]\right)$ to $\left(\mathrm{V}_{\text {SN1A }}+0.3 \mathrm{~V}\right)$
G1B, G2B $\max \left(-0.3 \mathrm{~V},\left[\mathrm{~V}_{\text {SN1B }}-14 \mathrm{~V}\right]\right)$ to ($\left.\mathrm{V}_{\text {SN1B }}+0.3 \mathrm{~V}\right)$
XI, XO..-0.3V to ($\mathrm{V}_{5}+0.3 \mathrm{~V}$)
$V_{\text {PM }} \max \left(0 V, V_{C C}\right.$, DIA, DIB, SN1A, SN1B, L+A, L+B)

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 1)

Multilayer Board

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

DC Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}\right.$ to $36 \mathrm{~V}, \mathrm{~V}_{5}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=1.62 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}$, all logic inputs at V_{L} or $\mathrm{GND} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~V}_{5}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3.3 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {cc }}$ POWER							
$\mathrm{V}_{\text {CC }}$ Supply Voltage	V_{CC}			9		36	V
V_{CC} Undervoltage-Lockout Threshold	V CCUVLO	V_{CC} rising		7		9	V
V_{CC} Undervoltage-Lockout- Threshold Hysteresis	VCCUVLO_HYST			340			mV
V ${ }_{\text {CC }}$ Supply Current	ICC	$\begin{aligned} & \text { REGEN = GND, } \\ & \text { L+EnA = L+EnB = } \\ & \text { 1, external clock } \\ & \text { selected, CQ_ in } \\ & \text { push-pull } \\ & \text { configuration, } \\ & \text { CL[1:0] = 00, no } \\ & \text { load on CQ_ } \end{aligned}$	CQ_ outputs low		0.4	0.75	mA
			CQ_outputs high		0.5	0.85	
$\mathrm{V}_{\text {CC }}$ Warning Threshold	VCC_WRN			16		18	V
$V_{C C}$ Warning Threshold Hysteresis	VCC_WHY				500		mV

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

DC Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}\right.$ to $36 \mathrm{~V}, \mathrm{~V}_{5}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=1.62 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}$, all logic inputs at V_{L} or $\mathrm{GND} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~V}_{5}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3.3 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER \& SYMBOL \& \multicolumn{2}{|r|}{CONDITIONS} \& MIN \& TYP \& MAX \& UNITS \\
\hline \multicolumn{8}{|l|}{\(\mathrm{V}_{5}\) POWER} \\
\hline \(\mathrm{V}_{5}\) Supply Voltage \& \(V_{5}\) \& \multicolumn{2}{|l|}{REGEN = GND} \& 4.5 \& 5 \& 5.5 \& V \\
\hline \(\mathrm{V}_{5}\) Supply Current \& IV5 \& \[
\begin{array}{|l}
\hline \text { REGEN = GND, } \\
\text { L+EnA = L+EnB = } \\
\text { 1, external clock } \\
\text { selected, CQ_in } \\
\text { push-pull } \\
\text { configuration, } \\
\text { CL[1:0] = 00, no } \\
\text { load on CQ_ }
\end{array}
\] \& \begin{tabular}{l}
CQ_outputs low \\
\hline CQ outputs high
\end{tabular} \& \& 1.4
1.4 \& 1.9

1.9 \& mA

\hline \multicolumn{8}{|l|}{V_{5} LINEAR REGULATOR}

\hline V5 Output Voltage \& V_{5} \& \multicolumn{2}{|l|}{REGEN unconnected, no load on V5, $C Q$ disabled, $\mathrm{L}+\mathrm{EnA}=\mathrm{L}+\mathrm{EnB}=0$} \& 4.75 \& \& 5.25 \& V

\hline V_{5} Current Limit \& ICL_V5 \& \multicolumn{2}{|l|}{REGEN unconnected, CQ_disabled,

$$
L+E n A=L+E n B=0
$$} \& 20 \& \& \& mA

\hline V_{5} Load Regulation \& dV_{V} 5 \& \multicolumn{2}{|l|}{REGEN unconnected, CQ_disabled, $\mathrm{L}+$ EnA $=\mathrm{L}+\mathrm{EnB}=0,0 \mathrm{~mA} \leq \mathrm{L}_{\mathrm{LOAD}} \leq$ 20 mA} \& \& -0.1 \& \& $\mathrm{mV} / \mathrm{mA}$

\hline REGEN Pullup Current \& $I_{\text {REGEN }}$ \& \multicolumn{2}{|l|}{$\mathrm{V}_{\text {REGEN }}=0 \mathrm{~V}$} \& 5 \& \& 30 \& $\mu \mathrm{A}$

\hline REGEN Threshold \& $\mathrm{V}_{\text {TH_REGEN }}$ \& \& \& 0.2 \& 1.8 \& 2.6 \& V

\hline \multicolumn{8}{|l|}{V_{L} POWER}

\hline V_{L} Logic-Level Supply Voltage \& V_{L} \& \& \& 1.62 \& \& 5.5 \& V

\hline V_{L} Undervoltage Threshold \& VLUVLO \& \multicolumn{2}{|l|}{V_{L} falling} \& 0.4 \& \& 1.5 \& V

\hline V_{L} Undervoltage Threshold Hysteresis \& VLUVHYS \& \& \& \& 50 \& \& mV

\hline V_{L} Logic-Level Supply Current \& IL \& \multicolumn{2}{|l|}{All logic inputs at V_{L} or GND, all logic outputs unconnected} \& \& \& 5 \& $\mu \mathrm{A}$

\hline \multicolumn{8}{|l|}{CQ_ DRIVER}

\hline \multirow{2}{*}{Driver On-Resistance} \& R_{OH} \& \multicolumn{2}{|l|}{High-side enabled, $\mathrm{I}_{\text {LOAD }}=-200 \mathrm{~mA}$} \& \& 1.0 \& 2 \& \multirow{2}{*}{Ω}

\hline \& R_{OL} \& \multicolumn{2}{|l|}{Low-side enabled, ${ }_{\text {LOAD }}=+200 \mathrm{~mA}$} \& \& 1.0 \& 2.2 \&

\hline \multirow{4}{*}{Driver Current Limit} \& \multirow{4}{*}{$\mathrm{I}_{\text {CL }}$} \& \multirow{4}{*}{$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CQ}}=\left(\mathrm{V}_{\mathrm{CC}}-3 \mathrm{~V}\right) \\
& \text { or } 3 \overline{\mathrm{~V}}
\end{aligned}
$$} \& $\mathrm{CL}[1: 0]=00$ \& 100 \& \& 150 \& \multirow{4}{*}{mA}

\hline \& \& \& CL[1:0] = 01 \& 190 \& \& 280 \&

\hline \& \& \& CL[1:0] = 10 \& 280 \& \& 410 \&

\hline \& \& \& $C L[1: 0]=11$ \& 500 \& \& 650 \&

\hline
\end{tabular}

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

DC Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}\right.$ to $36 \mathrm{~V}, \mathrm{~V}_{5}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=1.62 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}$, all logic inputs at V_{L} or $\mathrm{GND} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~V}_{5}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3.3 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
CQ_, DI_RECEIVER							
$\begin{aligned} & \text { CQ_, DI_ Input Threshold } \\ & \text { High } \end{aligned}$	$\mathrm{V}_{\text {TH }}$	CQ_driver disabled	$\begin{aligned} & \text { IEC3Th_/DiEC3Th } \\ & =0 \end{aligned}$	10.5		13.0	V
			IEC3Th_/DiEC3Th $=1$	7.5		11.0	
CQ_, DI_ Input Threshold Low	V_{TL}	CQ_driver disabled	$\begin{aligned} & \text { IEC3Th_/DiEC3Th } \\ & =0 \end{aligned}$	8.0		11.5	V
			IEC3Th_/DiEC3Th $=1$	6.0		8.0	
CQ_, DI_ Input Threshold Hysteresis	$\mathrm{V}_{\mathrm{HYS}}$	CQ_driver disabled	IEC3Th_/DiEC3Th = 0	2			V
			IEC3Th_/DiEC3Th $=1$		2		
CQ_Current Sink	ICQ_SNK	$\begin{gathered} \mathrm{V}_{\mathrm{CQ}}>5 \mathrm{~V}, \\ \text { SourceSink_ }=0 \end{gathered}$	2mA pulldown enabled (SinkSel_[1:0] = 10)	2	2.5	2.75	mA
			5 mA pulldown enabled (SinkSel_[1:0] = 01)	5	5.8	6.6	
CQ_ Current Source	ICQ_SRC	$\begin{gathered} \left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{CQ}}\right)>5 \mathrm{~V} \\ \text { SourceSink_}=1 \end{gathered}$	2mA pullup enabled (SinkSel_[1:0] = 10)	-2.75	-2.5	-2	mA
			5 mA pullup enabled (SinkSel_[1:0] = 01)	-6.6	-5.8	-5	
CQ_ Weak Pulldown Current	ICQ_PD	Driver disabled (DrvDis_= 1), SourceSink $=0$, weak pulldown enabled (SinkSel_[1:0] = 11), $\mathrm{V}_{\mathrm{CQ}}>5 \mathrm{~V}$		150		250	$\mu \mathrm{A}$
CQ_ Weak Pullup Current	$I_{\text {CQ_PU }}$	Driver disabled (DrvDis_= 1), SourceSink $=1$, weak pullup enabled (SinkSel_[1:0] = 11), $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{CQ}}>5 \mathrm{~V}$		-250		-150	$\mu \mathrm{A}$
CQ_ Input Current	$I_{C Q}$	$C Q _$driver enabled (DrvDis $=0$), CQ_set to high impedance, pullup and pulldown disabled (SinkSel_[1:0] = 00), receiver enabled, $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}$,$-1 \mathrm{~V}<\mathrm{V}_{\mathrm{CQ}}<\left(\mathrm{V}_{\mathrm{CC}}+1 \mathrm{~V}\right)$		-60		+400	$\mu \mathrm{A}$
CQ_Input Current, Extended Range	ICQ_EXT	$C Q _$driver enabled (DrvDis $=0$), CQ_set to high impedance, pullup and pulldown disabled (SinkSel_[1:0] = 00), receiver enabled, $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}$, $\left(\mathrm{V}_{\mathrm{CC}}-65 \mathrm{~V}\right)<\mathrm{V}_{\mathrm{CQ}}<60 \mathrm{~V}$		-200		+500	$\mu \mathrm{A}$

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

DC Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}\right.$ to $36 \mathrm{~V}, \mathrm{~V}_{5}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=1.62 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}$, all logic inputs at V_{L} or $\mathrm{GND} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~V}_{5}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3.3 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CQ_ Leakage Current	ICQ_LKG	CQ_driver disabled (DrvDis = 1), pullup and pulldown disabled (SinkSel_[1:0] = 00), receiver enabled, $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}$, $\left(\mathrm{V}_{\mathrm{CC}}-65 \mathrm{~V}\right)<\mathrm{V}_{\mathrm{CQ}}<60 \mathrm{~V}$	-100		+100	$\mu \mathrm{A}$
CQ_Push-Pull High Impedance Current	ICQ_HiZ	CQ_driver enabled (DrvDis $=0$), CQ_in push-pull, pullup and pulldown disabled (SinkSel_[1:0] = 00), receiver enabled, $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 0 \mathrm{~V}<\mathrm{V}_{\mathrm{CQ}}<24 \mathrm{~V}$	-50		+50	$\mu \mathrm{A}$
DI_ Current Sink	IDI_SNK	$\mathrm{V}_{\text {DI_ }}>5 \mathrm{~V}$, DiCSink $=1$	2	2.5	3	mA
DI_ Current Source	IDI_SRC	$\mathrm{V}_{\text {CC }}-\mathrm{V}_{\text {DI }}>5 \mathrm{~V}$, DiCSource $=1$	-3	-2.5	-2	mA
DI_ Input Current	${ }^{\text {I }}$ I	Pullup and pulldown disabled, DI_{-} receiver enabled, $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}$, $-1 \mathrm{~V}<\mathrm{V}_{\mathrm{DI}}<\left(\mathrm{V}_{\mathrm{CC}}+1 \mathrm{~V}\right)$	-5		+50	$\mu \mathrm{A}$
DI_Input Current, Extended Range	IDI_EXT	Pullup and pulldown disabled, DI_ receiver enabled, $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}$, $\left(\mathrm{V}_{\mathrm{CC}}-65 \mathrm{~V}\right)<\mathrm{V}_{\mathrm{DI}}<60 \mathrm{~V}$	-100		+100	$\mu \mathrm{A}$
LOGIC INPUTS ($\overline{C S}$, SDI, SCLK, A1, A0, TXENA, TXENB, TXA, TXB, CLKI)						
Logic Input Voltage Low	V_{IL}				$0.2 \times \mathrm{V}_{\mathrm{L}}$	V
Logic Input Voltage High	$\mathrm{V}_{\text {IH }}$		$0.8 \times \mathrm{V}_{\mathrm{L}}$			V
Logic Input Leakage Current	l LEAK	Logic input $=$ GND or V_{L}	-1		+1	$\mu \mathrm{A}$
LOGIC OUTPUTS (SDO, $\overline{\mathrm{IRQ}}, \mathrm{LIA}, \mathrm{LIB}, ~ R X A, ~ R X B, ~ \overline{R X R D Y A / L D 1 A, ~} \overline{\mathrm{RXERRA}}$ /LD2A, $\overline{\mathrm{RXRDYB}}$ /LD1B, $\overline{\mathrm{RXERRB}}$ /LD2B, CLKO)						
Logic Output Voltage Low	V_{OL}	$\mathrm{I}_{\text {OUT }}=-5 \mathrm{~mA}$			0.4	V
Logic Output Voltage High	V_{OH}	RX_, LI_, SDO, and CLKO, IOUT $=5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{L}}-0.4$			V
Output Leakage Current	IOH	$\overline{\mathrm{RXRDY}} / L D 1 _, \overline{\mathrm{RXERR}} / \mathrm{LD} 2, \overline{\mathrm{IRQ}}$, output is high impedance, output is pulled up to 5 V	-1		+1	$\mu \mathrm{A}$
CRYSTAL OSCILLATOR (XI, XO)						
Crystal Oscillator Current Supply	IV5_XTAL	$\mathrm{f}_{\mathrm{XTAL}}=14.7456 \mathrm{MHz}, \mathrm{V}_{5}$ supply current increase versus external clocking		240		$\mu \mathrm{A}$
Crystal Equivalent Series Resistance	ESRXtAL	$\mathrm{fXTAL}=14.7456 \mathrm{MHz}$ (Note 4)			75	Ω
Crystal Shunt Capacitance	Coxtal	$\mathrm{f}_{\text {XTAL }}=14.7456 \mathrm{MHz}$ (Note 4)			8	pF
Input Capacitance	CIN	XI		10		pF
		XO		10		
INTERNAL OSCILLATOR						
Internal Oscillator Current Consumption	IV5_Osc	(Notes 3, 5)		55		$\mu \mathrm{A}$

DC Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}\right.$ to $36 \mathrm{~V}, \mathrm{~V}_{5}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=1.62 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}$, all logic inputs at V_{L} or $\mathrm{GND} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~V}_{5}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3.3 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
EXTERNAL CLOCK INPUT (CLKI)						
External Clock Frequency	$\mathrm{f}_{\text {ECLK }}$			3.686		MHz
External Clock Detection	feCLK_DET	Minimum CLKI frequency for operation	0.5		2	MHz
CLKI Capacitance	$\mathrm{C}_{\text {CLKI }}$			2		pF
L+ SENSOR SUPPLIES WITH CURRENT LIMITING AND REVERSE BLOCKING (L+A, L+B)						
Reverse Current Blocking Threshold	$\mathrm{V}_{\text {TH_RCB }}$	$\mathrm{V}_{\mathrm{RCB}}=\left(\mathrm{V}_{\text {SN1 }}-\mathrm{V}_{\mathrm{CC}}\right)$			160	mV
G1_/G2_ Gate-to-Source On-Voltage	$\mathrm{V}_{\mathrm{G} \text { _ON }}$	$\mathrm{V}_{\text {SN1_ }}>18 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{SN} 1}- \\ 14 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{SN} 1}-- \\ 11 \mathrm{~V} \end{gathered}$	V
G2_ Minimum Gate-to-Source Voltage Under Regulation	$\mathrm{V}_{\mathrm{G} 2 \text { _REG }}$		$\begin{gathered} \mathrm{V}_{\mathrm{SN} 1}- \\ 0.8 \mathrm{~V} \end{gathered}$			V
G1_ Gate Turn-Off Switch Resistance	$\mathrm{R}_{\mathrm{G1} \text { _OFF }}$	G1_ pulled to SN1_		50		Ω
G2_ Gate Turn-Off Switch Resistance	$\mathrm{R}_{\mathrm{G} 2 \text { _OFF }}$	G2_ pulled to SN2_		50		Ω
L+_Current-Limit Threshold	$\mathrm{V}_{\text {CL_T }}$	$\mathrm{V}_{\mathrm{CL}} \mathrm{T}=\left(\mathrm{V}_{\text {SN1_- }}-\mathrm{V}_{\text {SN2_- }}\right), L^{+C L 2 X} \mathrm{X}_{-}=0$	12.75	15	18.5	mV
L+_ Double Current-Limit Threshold	$\mathrm{V}_{\mathrm{CL} \text { _2 }}$	$V_{C L} 2 T=\left(V_{S N 1}-V_{S N 2}\right), L+C L 2 X_{-}=1$, $\mathrm{V}_{\mathrm{CC}}^{-}=\mathrm{V}_{\mathrm{SN} 1_{-}}=\overline{2} 4 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}^{+}+}^{-}>18 \mathrm{~V}$	25.5	30	36	mV
SN1_ Supply Current	ISN1ACT	$\mathrm{V}_{\mathrm{L}+}>18 \mathrm{~V}, \mathrm{~L}+E n_{-}=1, L^{+C L 2 X}$ - $=1$		0.23	0.325	mA
SN2_ Input Current	ISN2	$\mathrm{V}_{\text {SN2_ }}=\mathrm{V}_{\text {SN1_ }}$	-10		+10	$\mu \mathrm{A}$
L+_ Input Current	$\mathrm{l}_{\text {L+ }}$	$\mathrm{V}_{\mathrm{L}+}=30 \mathrm{~V}$			20	$\mu \mathrm{A}$
L+_ Extended Range Input Current	IL+_EXT	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{SN} 1_{-}}=24 \mathrm{~V},\left(\mathrm{~V}_{\mathrm{CC}}-60 \mathrm{~V}\right)<\mathrm{V}_{\mathrm{L}+} \\ & <60 \mathrm{~V} \end{aligned}$	-50		+50	$\mu \mathrm{A}$
L+_Power Good Threshold	$\mathrm{V}_{\text {TL+_ }}$	L+_ rising	16		18	V
	$V_{\text {TL+_F }}$	L+_falling	15.5		17.5	V
L+_ Power Good Hysteresis	$\mathrm{V}_{\text {TL+ }}$			0.4		V
L+_Dynamic Blanking Threshold	VLPDTHR			8.8		V
THERMAL MANAGEMENT						
Thermal-Warning Threshold	TWRN	Die junction temperature rising, TempW and TempWInt bits are set		+135		${ }^{\circ} \mathrm{C}$
Thermal-Warning Threshold Hysteresis	TWRN_HYS	Die junction temperature falling, TempW bit cleared		15		${ }^{\circ} \mathrm{C}$
CQ_Thermal-Shutdown Temperature	TSHUT	Driver temperature rising, temperature at which the driver is turned off. ThShut and ThuShutint bits are set		+160		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Temperature Hysteresis	TSHUT_HYS	Driver temperature falling. ThShut bit is cleared		15		${ }^{\circ} \mathrm{C}$

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

AC Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}\right.$ to $30 \mathrm{~V}, \mathrm{~V}_{5}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=1.62 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~V}_{5}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3.3$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
CQ_ DRIVER							
Driver Low-to-High Propagation Delay	tpdLH	Push-pull and PNP configuration, Figure 1			0.27	0.5	$\mu \mathrm{s}$
		NPN configuration, Figure 1 (no capacitive load)			2.16		
Driver High-to-Low Propagation Delay	${ }^{\text {tPDHL }}$	Push-pull and NPN configuration, Figure 1			0.44	0.5	$\mu \mathrm{s}$
		PNP configuration, Figure 1 (no capacitive load)			0.3		
Driver Skew	tskew	$\left\|\mathrm{tPDLH}^{-} \mathrm{t}_{\text {PDHL }}\right\|$, Figure 1				0.15	$\mu \mathrm{s}$
Driver Rise Time	trise	Push-pull and PNP configuration, Figure 1			0.18	0.4	$\mu \mathrm{s}$
Driver Fall Time	$\mathrm{t}_{\text {FALL }}$	Push-pull and NPN configuration, Figure 1			0.18	0.4	$\mu \mathrm{s}$
Driver Enable Time High	$t_{\text {ENH }}$	Push-pull and PNP configuration, Figure 2			0.25	0.5	$\mu \mathrm{s}$
Driver Enable Time Low	$\mathrm{t}_{\text {ENL }}$	Push-pull and NPN configuration, Figure 3			0.15	0.5	$\mu \mathrm{s}$
Driver Disable Time High	$t_{\text {DISH }}$	Push-pull and PNP configuration, Figure 2			1.9	3	$\mu \mathrm{s}$
Driver Disable Time Low	${ }^{\text {D }}$ DISL	Push-pull and NPN configuration, Figure 3			1.7	3	$\mu \mathrm{s}$
CQ_ RECEIVER (Figure 4)							
CQ_Receiver Low-to-High	${ }^{\text {t CPRLH }}$	CQFilterEn_ = 0			0.28	0.5	$\mu \mathrm{s}$
Propagation Delay		CQFilterEn_ = 1			1.2	2	
CQ_Receiver High-to-Low Propagation Delay	${ }^{\text {t CPR HL }}$	CQFilterEn_ = 0			0.25	0.5	$\mu \mathrm{s}$
		CQFilterEn_ $=1$			1.2	2	
CQ_Receiver Skew	${ }^{\text {t CRSKEW }}$		CQFilterEn_ = 0			0.1	$\mu \mathrm{s}$
			CQFilterEn_ $=1$			0.1	$\mu \mathrm{s}$
DI_ RECEIVER (Figure 4)							
DI_Receiver Low-to-High Propagation Delay	${ }^{\text {t DPRLH }}$	DiFilterEn $=0$			1.9	3	$\mu \mathrm{s}$
		DiFilterEn = 1			2.9	4.2	
DI_ Receiver High-to-Low Propagation Delay	$t_{\text {DPR HL }}$	DiFilterEn = 0			1.3	3	$\mu \mathrm{s}$
		DiFilterEn = 1			2.3	4.2	
DI_ Receiver Skew	t ${ }_{\text {DRSKEW }}$	\|tDPRLH ${ }^{\text {- }}$ DPRHL ${ }^{\text {a }}$, DiFilterEn_ $=0$			0.5	1	$\mu \mathrm{s}$
		\|tDPRLH - ${ }_{\text {DPRHL }}$ \|, DiFilterEn_ $=1$			0.5	1	$\mu \mathrm{s}$
WAKE-UP PULSE							
Delay Time to Wake-Up Pulse	tsu_WU	(Figure 9)		80			$\mu \mathrm{s}$
Wake-Up Pulse Duration	twu	Wake-up (WU) pulse has the opposite polarity of the CQ_ line before the WU pulse was generated		75	80	85	$\mu \mathrm{s}$
On-Time After Wake-Up	ton_wu	Driver enabled with original polarity on CQ_line			100		$\mu \mathrm{s}$

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

AC Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}\right.$ to $30 \mathrm{~V}, \mathrm{~V}_{5}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=1.62 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~V}_{5}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3.3$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
L+ CURRENT LIMITING						
Reverse Current Blocking Response Time	$t_{\text {RCB }}$	Delay between $\left(\mathrm{V}_{\mathrm{RCB}}\right.$ rising $>\mathrm{V}_{\mathrm{TH}}$ RCB $)$ and IGATE2_ turned off		10		$\mu \mathrm{s}$
Reverse Current Blocking Threshold	$\mathrm{V}_{\text {TH_RCB }}$	$\mathrm{V}_{\mathrm{RCB}}=\left(\mathrm{V}_{\text {SN1_ }}-\mathrm{V}_{\mathrm{CC}}\right)$			160	mV
Current-Limit Blanking Time	$t_{L+C L B L}$	L+BL_[1:0] = 00	5	5.5		ms
		L+BL_[1:0] = 01	15	16.5		
		L+BL_[1:0] = 10	50	55		
		L+BL_[1:0] = 11	150	165		
Current-Limit Retry Delay	$t_{\text {L+CLRT }}$	L+RT_[1:0] = 00, latched off	∞			s
		L+RT_[1:0] = 01		0.5		
		L+RT_[1:0] = 10		4		
		L+RT_[1:0] = 11		10		
CYCLE TIMER						
Cycle Time	${ }^{\text {t CYCL }}$	Actual cycle time relative to programmed cycle time, using an external clock or crystal with 100ppm accuracy	0	4	5	\%
SPI TIMING ($\overline{\text { CS }}, \mathrm{SCLK}, \mathrm{SDI}, \mathrm{SDO}$) (Figure 5)						
Maximum SPI Clock Frequency		$1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}}<2.5 \mathrm{~V}$	15.6			MHz
		$\mathrm{V}_{\mathrm{L}} \geq 2.5 \mathrm{~V}$	20			
SCLK Clock Period	${ }^{\text {t }} \mathrm{CH}+\mathrm{CL}$	$1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}}<2.5 \mathrm{~V}$	64			ns
		$\mathrm{V}_{\mathrm{L}} \geq 2.5 \mathrm{~V}$	50			
SCLK Pulse-Width High	${ }^{t} \mathrm{CH}$	$1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}}<2.5 \mathrm{~V}$	32			ns
		$\mathrm{V}_{\mathrm{L}} \geq 2.5 \mathrm{~V}$	25			
SCLK Pulse-Width Low	${ }^{t} \mathrm{CL}$	$1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}}<2.5 \mathrm{~V}$	32			ns
		$\mathrm{V}_{\mathrm{L}} \geq 2.5 \mathrm{~V}$	25			
$\overline{\mathrm{CS}}$ Fall to SCLK Rise Time	${ }^{\text {t css }}$	$1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}}<2.5 \mathrm{~V}$	10			ns
		$\mathrm{V}_{\mathrm{L}} \geq 2.5 \mathrm{~V}$	7			
SDI Hold Time	${ }^{\text {D }}$ H	$1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}}<2.5 \mathrm{~V}$	0			ns
		$\mathrm{V}_{\mathrm{L}} \geq 2.5 \mathrm{~V}$	0			
SDI Setup Time	$t_{\text {DS }}$	$1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}}<2.5 \mathrm{~V}$	25			ns
		$\mathrm{V}_{\mathrm{L}} \geq 2.5 \mathrm{~V}$	23			
SDO Output Data Propagation Delay	$t_{\text {DO }}$	$1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}}<2.5 \mathrm{~V}$			35	ns
		$\mathrm{V}_{\mathrm{L}} \geq 2.5 \mathrm{~V}$			15	
SDO Rise and Fall Times	$t_{\text {t }}$	$\mathrm{V}_{\mathrm{L}}=1.8 \mathrm{~V}$		1.4		ns
		$\mathrm{V}_{\mathrm{L}} \geq 2.5 \mathrm{~V}$		0.7		

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

AC Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}\right.$ to $30 \mathrm{~V}, \mathrm{~V}_{5}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=1.62 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~V}_{5}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3.3$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Minimum $\overline{\mathrm{CS}}$ Pulse High	tcsw	$1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}}<2.5 \mathrm{~V}$	10			ns
		$\mathrm{V}_{\mathrm{L}} \geq 2.5 \mathrm{~V}$	10			
$\overline{\mathrm{CS}}$ Hold Time	${ }^{\text {t }} \mathrm{CSH}$	$1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}}<2.5 \mathrm{~V}$	32			
		$\mathrm{V}_{\mathrm{L}} \geq 2.5 \mathrm{~V}$	25			

Note 2: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design.
Note 3: Not production tested. Guaranteed by design.
Note 4: Includes stray capacitance or resistance. Required characteristic of the external crystal.
Note 5: V_{5} supply current increases when the internal oscillator is selected.

Figure 1. C/Q Driver Propagation Delays and Rise/Fall Times

Figure 2. C/Q Driver Enable Low and Disable High Timing with External Pullup Resistor (INVCQ_= 0)

Figure 3. C/Q Driver Enable High and Disable Low Timing (INVCQ_ = 0)

Figure 4. C/Q Receiver Propagation Delays

Figure 5. SPI Timing Diagram

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3.3 \mathrm{~V}\right.$, REGEN is unconnected, CQ_{-}is in push-pull configuration, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3.3 \mathrm{~V}\right.$, REGEN is unconnected, CQ_{-}is in push-pull configuration, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Pin Configuration

Pin Description

PIN	NAME	FUNCTION	REFERENCE
1	$\overline{\mathrm{IRQ}}$	Open-drain Interrupt Output. Connect a pullup resistor to $\overline{\mathrm{RQ}} . \overline{\mathrm{IRQ}}$ asserts whenever a bit that has been enabled in the InterruptEn register is set in the Interrupt register. See the Register Description for more information.	GND
2	$\overline{\mathrm{RXRDYA}} / \mathrm{LD} 1 \mathrm{~A}$	Channel A Configurable Open-Drain Receive Data Ready Output/LD1A Driver. Set the RxRdyEnA bit to 1 in the LEDCtrl register to enable RXRDYA/LD1A as an interrupt output. In this configuration, $\overline{\mathrm{RXRDYA}} / \mathrm{LD} 1 \mathrm{~A}$ asserts when the RxDataEnRdyA interrupt bit is set in the Interrupt register. Set the RxRdyA bit to 0 to configure $\overline{\text { RXRDYA/LD1A as an open-drain LED driver. When configured as }}$ an LED driver, $\overline{\mathrm{RXRDYA}} / \mathrm{LD} 1 \mathrm{~A}$ is controlled by the LEDEn1A bit in the LEDCtrl register. Connect a resistor in series to limit the LED current. See the Register Description for more information.	GND

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

Pin Description (continued)

PIN	NAME	FUNCTION	REFERENCE
3	$\overline{\text { RXERRA/LD2A }}$	Channel A Configurable Open-Drain Receive Error Output/LD2A Driver. Set the RxErrEnA bit in the LEDCtrl register to enable $\overline{\text { RXERRA/LD2A as an }}$ interrupt output. In this configuration, $\overline{R X E R R A} / L D 2 A$ asserts when the RxErrorA bit in the Interrupt register is set. Set the RxErrEnA bit to 0 to configure $\overline{R X E R R A} / L D 2 A$ as an open-drain LED driver. When configured as a LED driver, $\bar{R} X E R R A / L D 2 A$ is controlled by the LEDEn2A bit in the LEDCtrl register. Connect a resistor in series to limit the LED current. See the Register Description for more information.	GND
4	RXRDYB/LD1B	Channel B Configurable Open-Drain Receive Data Ready Output/LD1B Driver. Set the RxRdyEnB bit to 1 in the LEDCtrl register to enable $\overline{\text { RXRDYB/LD1B }}$ as an interrupt output. In this configuration, $\bar{R} X R D Y B / L D 1 B$ asserts when the RxDataRdyB interrupt bit is set in the Interrupt register. Set the RxRdyEnB bit to 0 to configure $\overline{R X R D Y B} / L D 1 B$ as an open-drain LED driver. When configured as an LED driver, $\overline{R X R D Y B} / L D 1 B$ is controlled by the LEDEn1B bit in the LEDCtrl register. Connect a resistor in series to limit the LED current. See the Register Description for more information.	GND
5	$\overline{\text { RXERRB/LD2B }}$	Channel B Configurable Open-Drain Receive Error Output/LD2B Driver. Set the RxErrEnB bit in the LEDCtrl register to enable $\overline{\mathrm{RXERRB}} / \mathrm{LD} 2 \mathrm{~B}$ as an interrupt output. In this configuration, $\overline{R X E R R B} / L D 2 B$ asserts when the RxErrorB bit in the Interrupt register is set. Set the RxErrEnB bit to 0 to configure $\overline{R X E R R B} /$ LD2B as an open-drain LED driver. When configured as an LED driver, $\overline{R X}-$ $\overline{\mathrm{ERRB}} / \mathrm{LD} 2 \mathrm{~B}$ is controlled by the LEDEn2B bit in the LEDCtrl register. Connect a resistor in series to limit the LED current. See the Register Description for more information.	GND
6	V_{5}	5 V Supply Input/Linear Regulator Voltage Output. Connect a $1 \mu \mathrm{~F}$ bypass capacitor as close as possible to the IC. Apply an external 5 V supply to V_{5} if the internal 5 V regulator is disabled (REGEN $=\mathrm{GND}$). 5 V must be present on V_{5} at all times for normal operation.	GND
7	REGEN	5V Linear Regulator Enable Input. Leave REGEN unconnected to enable the internal 5V regulator. Connect REGEN to GND to disable the internal 5 V regulator.	GND
8, 29	V_{CC}	V_{CC} Supply Input. Bypass V_{CC} to GND with a $1 \mu \mathrm{~F}$ capacitor as close as possible to the device.	GND
9	G1A	Channel A Gate Drive Output 1. Connect G1A to the gate of the external PMOS1A to control the external reverse-current-blocking transistor of sensor supply $A(L+A)$. Leave G1A unconnected if the external PMOS1A is not used.	SN1A
10	SN1A	Channel A Sense Input 1/PMOS1A Source Connection. Connect a currentlimiting resistor between SN1A and SN2A. Leave SN1A unconnected when the channel A supply controller is not used.	GND
11	SN2A	Channel A Sense Input 2/PMOS2A Source Connection. Connect a currentlimiting resistor between SN1A and SN2A. Connect SN2A to SN1A when current sensing is not used.	SN1A, GND
12	G2A	Channel A Gate Drive Output 2. Connect G2A to the gate of the external PMOS2A for the channel A sensor supply ($L+A$). Leave G2A unconnected if the external PMOS2A is not used.	SNA1, GND

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

Pin Description (continued)

PIN	NAME	FUNCTION	REFERENCE
13	L+A	Channel A L+ Sensor Supply Monitoring Input. Connect $L+A$ to the drain of the external PMOS2A current-limiting transistor. Bypass L+A to GND with $0.47 \mu \mathrm{~F}$. Connect a 100Ω resistor in series with L+A (see Typical Operating Circuit). Connect L+A to GND or leave unconnected if not used.	GND
14	DIA	Channel A Auxiliary Digital Input. Connect a 100Ω resistor in series with DIA (see Typical Operating Circuit).	GND
15, 16 18,19, 21, 22	N.C.	No Connection. Not internally connected.	-
17	CQA	Channel A C/Q Transceiver Input/Output	V_{CC}, GND
20	CQB	Channel B C/Q Transceiver Input/Output	V_{CC}, GND
23	DIB	Channel B Auxiliary Digital Input. Connect a 100Ω resistor in series with DIB (see Typical Operating Circuit).	GND
24	L+B	Channel B L+ Sensor Supply Monitoring Input. Connect L+B to the drain of the external PMOS2B transistor to limit the load current sourced by the channel B source supply. Bypass L+B to GND with $0.47 \mu \mathrm{~F}$. Connect a 100Ω resistor in series with L+B (see Typical Operating Circuit). Connect L+B to V_{CC} or GND, or leave unconnected if not used.	GND
25	G2B	Channel B Gate Drive Output 2. Connect G2B to the gate of the external PMOS2B for the channel B sensor supply ($L+B$). Leave G2B unconnected if the external PMOS2B is not used.	SN1B
26	SN2B	Channel B Sense Input 2/PMOS2B Drain Connection. Connect a currentlimiting resistor between SN1B and SN2B. Connect SN2B to SN1B or leave unconnected when current sensing is not used.	SN1B
27	SN1B	Channel B Sense Input 1/PMOS1B Source Connection. Connect a current-limiting resistor between SN1B and SN2B. Leave SN1B unconnected when supply controller B is not used.	V_{CC}
28	G1B	Channel B Gate Drive Output 1. Connect G1B to the gate of the external PMOS1B to control the external reverse-current-blocking transistor of sensor supply $B(L+B)$. Leave G1B unconnected if the external PMOS1B is not used.	SN1B
30	LIB	Channel B Logic Output of the Digital Input (DIB). LIB is the logic inverse of the signal on DIB.	V_{L}, GND
31	RXB	Channel B Logic Output of the CQB Receiver. RXB is the logic inverse of the signal on CQB (when InvCQB = 0).	V_{L}, GND
32	TXENB	Channel B CQB Transmitter Output Enable. Drive TXENB high to enable the CQB driver. Drive TXENB low when using the internal UART.	V_{L}, GND
33	TXB	Channel B CQB Transmitter Logic Input. CQB is the logic inverse of the signal on TXB (when InvCQB = 0). Drive TXB high when using the internal UART.	V_{L}, GND
34	TXA	Channel A CQA Transmitter Logic Input. CQA is the logic inverse of the signal on TXA (when InvCQA = 0). Drive TXA high when using the internal UART.	V_{L}, GND
35	TXENA	Channel A CQA Transmitter Output Enable. Drive TXENA high to enable the CQA driver. Drive TXENA low when using the internal UART.	V_{L}, GND

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

Pin Description (continued)

PIN	NAME	FUNCTION	REFERENCE
36	RXA	Channel A Logic Output of the CQA Receiver. RXA is the logic inverse of the signal on CQA (when InvCQA = 0).	V ${ }_{\text {, GND }}$
37	LIA	Channel A Logic Output of the Digital Input (DIA). LIA is the logic inverse of the signal on DIA.	V_{L}, GND
38	A0	SPI Chip Address Input A0. The MAX14819 is designed to allow up to 4 transceivers on the SPI at one time with a shared $\overline{\mathrm{CS}}$ signal. Connect A1 and A0 high or low to set the individual IC SPI address. Do not leave A0 unconnected.	V ${ }_{\text {, GND }}$
39	A1	SPI Chip Address Input A1. The MAX14819 is designed to allow up to 4 transceivers on the SPI at one time with a shared $\overline{\mathrm{CS}}$ signal. Connect A1 and A0 high or low to set the individual IC SPI address. Do not leave A1 unconnected.	V ${ }_{\text {L }}$ GND
40	V_{L}	Logic Level Supply Input. V_{L} sets the logic level of all logic inputs and outputs (TXEN_, TX_, RX_, LI_, and the SPI interface). Bypass VL to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device.	GND
41	XI	Crystal Oscillator Input for Internal Framer Operation. Connect a crystal between XI and XO to use crystal clocking. Leave XI unconnected if crystal clocking is not used.	V_{5}, GND
42	XO	Crystal Oscillator Output for Internal Framer Operation. Connect a crystal between XI and XO to use crystal clocking. Leave XO unconnected if crystal clocking is not used.	V_{5}, GND
43	CLKI	Logic Clock Input for Internal Framer Operation. When not using a crystal for framer operation, connect a 3.686 MHz clock signal to CLKI. Connect CLKI to GND when not used.	V_{5}, GND
44	CLKO	Logic Clock Output for Internal Framer Operation. CLKO outputs a 3.686 MHz clock signal when enabled (CIkOEn = 1). When using multiple MAX14819 ICs on a board, these can be clocked with a single crystal by connecting the CLKO output of one device to the CLKI inputs of the other(s).	V_{5}, GND
45	SDI	SPI Data Input. Connect SDI to the MOSI output of the microcontroller.	V_{5}, GND
46	SDO	SPI Data Output. Connect SDO to the MISO input of the microcontroller.	V_{5}, GND
47	SCLK	SPI Clock Input. Connect SCLK to the CLK output of the microcontroller.	V_{5}, GND
48	$\overline{\mathrm{CS}}$	SPI Chip-Select Input. The SPI cycle begins when $\overline{\mathrm{CS}}$ is driven low and ends when $\overline{\mathrm{CS}}$ is driven high. Up to 4 MAX14819 ICs can share a single SPI bus and $\overline{\mathrm{CS}}$ input using the A 1 and A 0 address inputs.	V_{5}, GND
EP	-	Exposed Pad. Connect to GND.	GND

Detailed Description

The MAX14819 low-power dual-channel industrial IO-Link master transceiver is fully compliant with the latest SDCI/ IO-Link standards and test specifications. The MAX14819 features two integrated framers but can alternatively operate with external UARTs.
The MAX14819 features a high-speed SPI interface for system-side data and control interfacing. Integrated IO-Link message frame handlers and FIFOs simplify time critical control and cycle time management of all IO-Link M-sequence communication, easing data link layer control. Autonomous cycle timers also reduce the need for accurate controller timing. Integrated establish-communication sequencers simplify wake-up management.
The MAX14819 further includes two sensor supply controllers (L+A, L+B) with current limiting and reverse current blocking. The current limit is set with external sense resistors.

POWER

Power-Up

The CQ_ driver outputs are high impedance when the V_{CC} supply, V_{5}, and V_{L} voltages are below their respective undervoltage thresholds during power-up.
The drivers are automatically disabled when the V_{CC} voltage falls below the 9V (typ) UVLO threshold. The SPI interface remains active while V_{5} and V_{L} are present.

Vcc Low Voltage and Undervoltage Detection

The MAX14819 monitors the VCC supply for low-voltage and undervoltage conditions. Low-voltage warnings are reported in the Status register and can be configured to generate an interrupt on the $\overline{\mathrm{IRQ}}$ output.
When V_{CC} falls below the 18 V (max) low-voltage warning threshold, the VCCWarn and VCCWarnCOR bits in the Status register are set. If VCCWarnCOR in the Clock register is set, a StatusInt interrupt is generated and $\overline{\mathrm{IRQ}}$ asserts.
When V_{CC} falls below the 9 V (max) undervoltage-lockout (UVLO) threshold, the VCCUV and VCCUVCOR bits in the Status register are set. A Statusint interrupt is generated and IRQ asserts.

5V Linear Regulator

The MAX14819 includes an integrated regulator to generate $5 \mathrm{~V}\left(\mathrm{~V}_{5}\right)$. To enable the internal regulator, leave REGEN unconnected and connect a $1 \mu \mathrm{~F}$ bypass capacitor between V_{5} and ground as close as possible to the device. The internal V_{5} regulator is capable of driving external loads up to 20 mA .
When the internal 5 V linear regulator is not used, V_{5} is the supply input for the internal analog and digital functions and must be supplied externally. Connect REGEN to ground to disable the internal regulator when applying an external 5 V to V_{5}. Ensure that V_{5} is present for normal operation.
An internal undervoltage lockout comparator detects when the V_{5} voltage falls below the 3.5 V (typ) V_{5} UVLO threshold. When the V_{5} voltage drops below this level, the device is under reset: SPI registers are reset to their power-up state, the CQ_ outputs and L+_ supplies are disabled, internal pullups/pulldowns are turned off, the CQ_ and DI_receivers are disabled, and the LED outputs are high impedance. When the V_{5} voltage rises above the UVLO threshold, the MAX14819 restarts in the default power-on configuration.
The internal V_{5} regulator output is not protected against short circuits.

Logic Supply (V_{L})

The V_{L} input is the logic-level supply for all the digital I/ Os. Apply a voltage between 1.62 V and 5.5 V to V_{L} for normal operation.
Internal UVLO circuitry monitors the V_{L} supply. If V_{L} falls below the 0.7 V (typ) V_{L} UVLO threshold, all the digital I/Os referred to V_{L} are ignored and either set to high impedance or are low.

L+ Sensor Supply Controllers

The MAX14819 includes one sensor/actuator supply controller for each IO-Link channel, L+A and L+B. Each sensor supply is configurable through the SPI interface and must be enabled by setting the L+En_ bit in the L+Cnfg_ register. Using external pMOS transistors, these controllers provide active current limiting, reverse current blocking, and undervoltage detection. The $24 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ field supply input is tolerant to reverse voltage and the L+A/L+B output is negative voltage capable down to $\mathrm{V}_{\mathrm{CC}}-60 \mathrm{~V}$.

Setting the L+_Current Limit

The L+_ sensor supply current is limited by placing a sense resistor between the SN1_ and SN2_ currentsense inputs. When the voltage across the resistor reaches the $\mathrm{V}_{\mathrm{CL} _} \mathrm{T}(15 \mathrm{mV}$, typ) threshold, the gate of the pMOS (G2_) is actively controlled to limit the load current such that:

$$
\mathrm{I} \text { LIM }=\mathrm{V}_{\text {CL_T}} \text { T/RSENSE }
$$

If the L+_ voltage is pulled below ground (<-3V), the current limit is reduced to about 10% of normal value to reduce the power dissipated in the external pMOS.

L+_ Blanking Time and Autoretry Functionality

The L+_ controllers have programmable variables (set in the L+Cnfg_ registers) that allow the system to optimize turn-on and charging large loads while protecting the pMOS FETs in cases of shorts and challenging load conditions.
If the load current is in current limiting for a period exceeding the set blanking time, the gate drive (G2_) is turned off. The sensor supply is then either turned off until the controller reenables it, or is turned on again following the autoretry delay.
To further reduce the power dissipated in the pMOS transistors during turn-on of loads that require large inrush currents (e.g., capacitive loads), the current limiter includes a dynamic blanking time mode that reduces the blanking time when the voltage across the pMOS is high, limiting the pulse energy during the initial turn-on phase. Dynamic blanking time mode is operational when the L+_ output voltage is below 18 V and must be enabled by setting the L+DynBI_ bit in the L+Cnfg_ register.
The MAX14819 current-limit circuitry also includes the option to double the L+_ load current when the L+_ supply voltage is above $18 \overline{\mathrm{~V}}$. This functionality is enabled by setting the L+CL2x_ bit in the L+Cnfg_ register.

Bypassing the L+_Sensor Supplies

When the internal L+_ supply controllers are not used, leave all the associated pins (G1_, G2_, SN1_, SN2_, L+_) unconnected. L+_ can also be connected to GND.

CQ_ Transceivers

The CQA and CQB drivers are independently configurable as push-pull, NPN, or PNP mode outputs in the SPI registers. Set the bits in the CQCfgA and CQCfgB registers to configure the drivers, enable or disable internal pullup and pulldown current sources on the CQ_ I/Os, and to set the digital input thresholds. The CQ_ drivers can also be enabled/disabled in these registers.

CQ_Current Limit and Thermal Protection

The MAX14819 features a selectable current limit for both CQ_drivers ranging from 100 mA to 500 mA . Set the $C L[1: 0]$ bits in the DrvrCurrLim register to select the current limit for the drivers.
The CQ_ drivers are independently thermally protected. If one output driver temperature rises above the $160^{\circ} \mathrm{C}$ threshold, that output is disabled until the temperature drops below $145^{\circ} \mathrm{C}$.

CQ_ Driver Fault Detection

The MAX14819 senses a fault condition on the CQ_ driver when an overcurrent event exists for longer than the blanking time. Both the current limit and blanking time can be configured in the DrvrCurrLim register.
When a short-circuit fault occurs on CQ_, the CQFault and CQFaultCOR_ bits in the ChanStat_ register are set and can trigger an interrupt.
When an overcurrent event occurs on CQ_, the driver can either be set to continue supplying the selected current until the device enters thermal shutdown (autoretry is disabled), or to enter autoretry mode. In autoretry mode, the driver is automatically disabled after the current blanking time and is then reenabled.

CQ_Reverse-Polarity Protection

The CQ_outputs are protected against reverse polarity vs. ground. If CQ_ is connected to a negative voltage, the driver is automatically disabled and CQ_ is set to high impedance.
When CQ_ is shorted to a voltage above V_{CC}, the driver is automatically disabled and the output is set to high impedance.
During a reverse condition, positive or negative, when no fault is detected on CQ_ but the internal diode begins to overheat, the L+_ supply is immediately disabled (turning off the external transistors) to protect the device.
Reverse conditions do not generate a fault or interrupt.

CQ_Current Sources/Sinks

The MAX14819 features programmable internal $2.5 \mathrm{~mA} / 5.8 \mathrm{~mA}$ pullup/pulldown current sources on the CQ_ receivers. Select the pullup/pulldown current for each CQ_ I/O by setting the SinkSel_[1:0] bits in the CQCfg_ register. The internal pullup/pulldown currents are automatically disabled when the CQ_output is driven (i.e., push-pull not in high-impedance state, NPN mode is set low, or NPN mode is set high).

CQ_Receiver Output (RXA/RXB)

RX_ is the output of the CQ_receiver. By default, the RX_ output is the inverse logic of the CQ_ input. Setting the InvCQ_ bit in the MsgCtrl_ register inverts CQ_ so that the $R X$ _ output is the same logic of the CQ_ input. RX_ cannot be disabled/three-stated.

CQ_ Receiver Threshold

The CQ_ receiver thresholds are compliant with the IO-Link standard by default. The receiver thresholds are also configurable to be compatible with the IEC 61131-2 type 1 and type $2 / 3$ digital inputs. Set the IEC3Th_ bit in the CQCfg_ register to select the input thresholds for each receiver.

CQ_Receiver Deglitch

The CQ_ receivers feature a selectable glitch filter for improved noise immunity. Enable/disable this filter by setting the CQFilterEn_ bit in the CQCfg_ register. Transients longer than $1.3 \mu \mathrm{~s}$ (typ) are ignored when the glitch filter is enabled.

DI_ Receiver

The MAX14819 includes two auxiliary digital inputs: DIA and DIB. These inputs are protected against reverse polarity (referred to V_{CC} and/or GND).
DI_ inputs are configurable in the IOStCfg_ registers. Set the DiCSource__ bit to enable the internal 2.4 mA source on the DI_ input. Set the DiCSink_ bit to enable the 2.4 mA sink on the input.
Each DI_ input also features a selectable glitch filter for improved noise immunity. Transients longer than $1.3 \mu \mathrm{~s}$ (typ) are ignored when the glitch filter is enabled. Set the DiFilterEn_ bit to enable or disable this filter. When the glitch filter is enabled, signal pulses less than 1μ s are ignored on the DI_ input.
The DI_ receiver thresholds are configurable to be compatible with the IEC 61131-2 type 1, and type 2/3 digital inputs. Set the DiEC3Th_ bit in the IOStCfg_register to select the input thresholds for each receiver.

SPI Interface

The MAX14819 is connected to a microcontroller or SPI-host through an SPI-compatible serial interface. The interface has three inputs: clock (SCLK), chip select (CS), and data in (SDI), and one output, data out (SDO). SDO is high impedance when CS is high, allowing multiple SPI slave devices to share a common bus. The SPI is not daisy-chainable. The maximum SPI clock rate is 20 MHz when $\mathrm{V}_{\mathrm{L}}>2.5 \mathrm{~V}$.
The SPI interface logic complies with SPI clock polarity $(\mathrm{CPOL}=0)$ and clock phase $(\mathrm{CPHA}=0)$. The SPI
interface supports both byte-by-byte cycle and burst mode read and write.
In both read and write cycles, the SDO signals the IRQ status, as well as the receive-data-ready and receive-dataerror for both receivers A and B (Figure 6 and Figure 7).
The SPI interface is not available when the V_{L} voltage is below the 0.7 V (typ) V_{L} UVLO threshold or when 5 V is not present on V_{5}. The SPI registers are reset to their default state when the V_{5} voltage falls below the $3.5 \mathrm{~V} \mathrm{~V}_{5}$ UVLO threshold.
SPI Chip Address (A1, A0)
The MAX14819 is designed to allow up to four master transceivers on a single bus with a single/shared CS. This is accomplished using SPI-addressable devices with logic address inputs A1 and A0. See Table 1. Do not leave the A1 or A0 address input unconnected. Each chip on the SPI bus should be assigned an individual chip address.
The MAX14819 monitors the SPI address in each read/ write cycle and responds when the SPI address matches the pin-programmed address for that IC.
SPI trigger commands are global and are not filtered by the chip address. All MAX14819 devices connected to the SPI bus will react to a received trigger command.

SPI In-Band IRQ Interrupt

The addressed MAX14819 sends out an IRQ bit on SDO in every SPI cycle (both in single cycle as well as burst mode), beginning on the third SPI clock. This bit is equivalent to the $I R Q$ interrupt output pin logic, but inverted (active high). The IRQ bit is set when the $\overline{I R Q}$ pin is asserted. Similarly, when the $\overline{\mathrm{IRQ}}$ output is high impedance, the IRQ bit is 0 . See Figure 6 and Figure 7.
The IRQ bit cannot be masked.

SPI In-Band Device-Message-Ready Signaling

In addition to sending IRQ status, the addressed MAX14819 can be enabled to also send out 2 bits per channel in every SPI cycle that provide information, whether the IO-Link device answer message was received correctly (RRDY_) or in error (RERR_) (Figure 6 and Figure 7). Set the RMessgRdy_ bits in the MesgCrtl_ register to enable this functionality.

Table 1. SPI MAX14819 Chip Address Select

A1	A0	DEVICE ADDRESS
LOW	LOW	00
LOW	HIGH	01
HIGH	LOW	10
HIGH	HIGH	11

Figure 6. SPI Byte-by-Byte Write Cycle

Figure 7. SPI Byte-by-Byte Read Cycle

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

The RRDY_ bits are equivalent to the DtaRdy_hardware outputs. Similarly, the RERR_ bits are the equivalent to the RxErr_ hardware outputs. The SDO bit logic is the inverse of the pin logic: when the pin output is low, the associated bit is set to 1 , and when the pin output is high, the associated bit is 0 .
The RRDY_ bits and the $\overline{R X R D Y}$ _ pins are cleared automatically when the device message is read out of the RxFIFO_.

SPI Burst Access

Burst access allows SPI reading/writing of two or more bytes in a single SPI cycle. The chip-select input ($\overline{\mathrm{CS}}$) must be held low during the entire burst write/read cycle.

The SPI clock must continue clocking throughout the burst access cycle. Only the initial register address is sent, followed by multiple bytes of data. The burst cycle ends when the SPI master pulls $\overline{\mathrm{CS}}$ high. See Figure 8.
When performing a burst read or write of/to the TxRxData_ registers, the register address remains the same, allowing fast loading of a master message into the TxFIFO_ and reading of the device message out of the RxFIFO_.
When burst reading or writing of registers having a higher address than the TxRxData_ registers, the register address is automatically incremented, allowing reading and writing of a consecutive register block by only defining the initial register address in the SPI command byte.

Figure 8. SPI Burst Read/Write and Byte-by-Byte Read/Write Overview

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

Wake-Up Pulse Generation

The MAX14819 can automatically generate a wake-up pulse to initiate IO-Link communication. Set the CQ_ driver into receive mode (TXEN = low or TxEn_= 0), and drive TX_ low or set the Tx_ bit to 0 before the wakeup sequence begins. Set the WuPuls_ bit to begin the wake-up sequence. When the WuPuls_ bit is set, the MAX14819 samples the CQ_ voltage level and then automatically enables the CQ_ driver. A 500 mA current pulse of opposite polarity is applied to the CQ_ line for $80 \mu \mathrm{~s}$ (typ). During the wake-up pulse, the CQ_ current limit is temporarily set above 500 mA internally, although the $C L$ _ register bits are not changed. The driver remains enabled, the line returns to the original polarity, and after a $100 \mu \mathrm{~s}$ (typ) delay the MAX14819 CQ_driver is set to high impedance (Figure 9). The WuPuls_ bit is automatically cleared after the tON_WU delay.

Microcontroller Data Interface

The MAX14819 offers two interface options for IO-Link communication. When used as a transceiver, external UARTs are required in the microcontroller and these are interfaced to the TX_, RX_ and TXEN_ pins. If the IO-Link framers in the MAX14819 are used, then the SPI is used for interfacing to the microcontroller.

Framer Communication

The MAX14819 includes two independent IO-Link framers with UARTs, one for each CQ_ channel. Each framer operates in a Master-message (TX)/Device-message (RX) doublet, verifying communication timing and data transmitted/received. After a channel has completed transmission of a master message, the framer is automatically switched into receive mode. When the expected number of bytes has been received, the framer automatically exits from receive mode and any further received data is ignored.

UART Framing

The UART frame is made up of one start bit, 8 data bits with 1 even parity bit and 1 STOP bit. When transmitting, the idle time between the STOP bit and the following START bit is less than 1 bit interval.

Frame Handler FIFOs (TxRxFIFOA/TxRxFIFOB)

Each IO-Link channel on the MAX14819 (CQA and CQB) has a transmit and receive FIFO for buffering the IO-Link M-sequence messages that are sent and received. These FIFOs have a depth (66 bytes) to buffer the largest M-sequence, Type 2.V, in addition to the two length bytes.

Transmit/Receive FIFO Data Structure

To ensure proper communication, the message from the SPI master to the TxFIFO_ must follow the sequence shown in Figure 10.

Figure 9. Wake-Up Timing

Figure 10. Transmit SPI Data Write Sequence

RxBytes is the number of octets the IO-Link device is expected to reply with after it receives this master message. TxBytes is the number of bytes that the master will send to the device in this message (the master message length).
The IO-Link device answers with the device message, which is stored in the RxFIFO_. When the RxFIFO_ on the MAX14819 is read, the data is formatted as shown in Figure 11. RxBytesAct is the actual number of bytes received from the device and available for readout from the RxFIFO_. This may differ from the expected number of receive bytes (RxBytes).

Loading the Transmit FIFO (TxFIFO_)

The master message is loaded into the transmit FIFO (TxFIFO_) through the SPI interface. The SPI master needs to send three pieces of information to the TxRxData_ register for a complete master message (Figure 12):

1) A byte describing the expected number of bytes of the IO-Link device reply message. This is RxBytes.
2) A byte describing the number of bytes in the master message (the length that will be transmitted). This is TxBytes.
3) The data for the master message.

The TxBytes byte signals the number of octets in the master message and the RxBytes indicates the num-
ber of octets expected from the device in the response message.

Set the TSizeEn_ bit in the MsgCtrl_ register to compare the TxBytes information to the number of octets loaded in the TxFIFO_ and verify that the full message has been received by the SPI master. The TSizeEn_ functionality can be used either for byte-by-byte FIFO loading or for burst loading. When a size error is detected, a TSizeErr_ interrupt is generated.
The TxFIFO_ can be written to using byte-by-byte write or a burst write. When loading the TxFIFO_ with byte-bybyte writing, the CQ_ transmission can be started before the complete master message is loaded into the TxFIFO_ (transmission and TxFIFO_ loading can be done in parallel). In this case, the SPI controller must set the InsChks bit in the MsgCtrl_register to 0 and include the 6-bit checksum in the master message CKT octet, since the MAX14819 cannot calculate it. The MAX14819 can only generate a TChkSmEr_interrupt after the whole message is loaded into the TxFIFO_; if transmission is started before the full message was loaded, it is possible that the IO-Link device will receive a message with a checksum in error.
When transmission starts after the TxFIFO_ is completely loaded, the MAX14819 can calculate and insert the checksum (when InsChk_= 1) into the CKT octet. Alternatively, the SPI master can insert the checksum in the master message and the MAX14819 will verify the data (SPIChks_ = 1). If a checksum error is detected, a

Figure 11. Receive SPI Data Read Sequence

Figure 12. Message Timing

TChksmEr_ interrupt is generated and the MAX14819 does one of two things, depending on the state of the TxErDestroy_ bit in the MsgCtrl_ register:

- If TxErDestroy $=1$: The MAX14819 will not send the message, so the SPI master must reload the message into the TxFIFO_ in time for the cycle time.
- If TxErDestroy $=0$: The MAX14819 sends the message with the error.

Initiating Transmission

Transmission on CQ_ is initiated either by setting the CQSend_ bit in the CQCtrl_ register or by using a trigger command (see the TrigAssḡn_ register for more information). Transmission can also be initiated cyclically when the internal cycle time is enabled (CyclTmrEn_=1).
When SPI burst write mode is used, transmission must be initiated after the TxFIFO_ is loaded or the MAX14819 generates a cycle error interrupt (TCycleErr_ = 1).
When using byte-by-byte SPI write mode, transmission can be initiated before the complete master message is loaded. When using this mode, ensure that the TxFIFO_ always has at least 1 data byte stored in it to avoid any idle time or errors. The TxFIFO_ transmission is halted and the CQ_ transceiver is configured to receive mode as soon as the TxFIFO_ is empty.
During transmission, the CQ_ transmitter is set to pushpull mode. CQ_ is restored to the previous state when transmission is complete.

Transmit Loopback Check

The internal framers automatically verify transmitted data through a loopback check. During transmission, the signal at CQ_ is automatically routed to the receiver and the message sent is checked against the data sent out. If inconsistencies are detected (e.g., when a CQ_ line is shorted), the TransmErr_ bit is set and a TxError_ interrupt can be generated.

Receiving the Device Message

When the MAX14819 completes transmission of the master message to the IO-Link device, the CQ_ transmitter is set to receive mode within $3 \mu \mathrm{~s}$ (typ) and the master waits for the device reply message. The MAX14819 waits for 9 to 24 bit times (set by the DDelay_ bits in the DeviceDly_ register) for a valid START from the device.
From the RxBytes data in the master message, the MAX14819 already knows the number of bytes expected to be returned from the device. If the number of bytes received is not the expected number, a RSizeErr_ interrupt is generated. The receiver stops reception when the number of received bytes equals the value in RxBytes
and any further data sent from the device is ignored. Reception is also terminated when less bytes are received than expected. The MAX14819 determines this to be the case when no START bit occurs within 2 to 5 bit times (as set in the BDelay_bits in the DeviceDly_register) after the last character's STOP bit.
When the device message is received successfully (without any errors), an RxDataRdy_ interrupt is signaled to the host SPI controller by asserting the $\overline{\mathrm{RQ}}$ pin (if (RDaRdyIntEn = 1) and/or by asserting the RXRDY_/ LD1_ pin when the received data (device message) is ready for readout from the RxFIFO_. The host controller can read out the message from the RxFIFO_ in byte-bybyte mode or in a single-burst SPI cycle. The $\overline{\mathrm{RQ}}$ and/or RXRDY/LD1_ interrupts are automatically cleared when the first byte of the message is read out of the RxFIFO_, or alternatively, by reading the Interrupt register.
If the device message is not received successfully (i.e., received with an error), an RxError_interrupt is signaled to the host controller by asserting the $\overline{\mathrm{IRQ}}$ pin (if RxErrIntEn_ $=1$) and/or by asserting the $\overline{\text { RXERR_/LD2_ pin. Detected }}$ errors in the received data can include checksum, parity, UART framing, or size deviations. The RxError_ interrupt is cleared only when the Interrupt register is read.

Monitoring Message Timing

The IO-Link standard requires that the device reply message must be fully received within a time of t_{M}-sequence after the start of the communication cycle:

$$
\begin{gathered}
\mathrm{t}_{\mathrm{M} \text {-sequence }}=(\mathrm{m}+\mathrm{n}) \times 11 \times \mathrm{T}_{\mathrm{BIT}}+\mathrm{t}_{\mathrm{A}} \\
+(\mathrm{m}-1) \times \mathrm{t}_{1}+(\mathrm{n}-1) \times \mathrm{t}_{2}
\end{gathered}
$$

where m is the number of octets in the master message, n is the number of octets in the device message, $\mathrm{T}_{\text {BIT }}$ is the bit time at the present COM data rate, $\mathrm{t}_{\mathrm{A}}(\max)$ is 10 bits, t_{1} is a maximum of 1 bit, and t_{2} is a maximum of 3 bits (Figure 12).
The MAX14819 can be set to generate an error if the device message is not completely received in the expected ${ }^{\text {tM-sequence }}$ window. Set the RspnsTmrEn_ bit in the DeviceDly_register to enable the internal message timing monitor.
While the IO-Link standard specifies $\mathrm{t}_{\mathrm{M} \text {-sequence }}$ as the longest allowable delay, actual IO-Link devices may exhibit longer delays (e.g., a longer delay can occur when t_{A} exceeds more than $10 \times T_{\text {BIT }}$). The MAX14819 can be set to allow for these tolerances. Set the BDelay_[1:0] and DDelay_[3:0] bits in the DeviceDly_ register to add additional delay. For IO-Link compliance, set BDelay_[1:0] = 01b and DDelay_[3:0] = 0001b. If a device message is
not received or not completely received in this time, the RxErr_ interrupt is signaled.

Checksum Calculation and Checking

The MAX14819 can perform standard IO-Link 6-bit checksum calculation and checksum verification. This can be used to generate the master message checksum automatically, to check the integrity of the master message from the SPI master to the TxFIFO_, and to check the received device message.
Set the InsChks_ bit in the MsgCtrl_ register to enable master-message checksum generation. When enabled, the checksum bits from the SPI master are ignored and the MAX14819 inserts the calculated checksum bits into the CKT octet before transmission. The master message must be completely loaded into the TxFIFO_before transmission for the MAX14819 to insert the calculated checksum into the message.
Set the SPIChks_ bit in the MsgCtrl_ register to enable the MAX14819 to verify the current checksum in the CKT octet in the TxFIFO_ with the calculated master-message checksum. If a difference is detected, a TChksmEr_ interrupt is generated. When the TxErDestroy_ bit in the MsgCtrl_register is set, the master message is deleted in the TxFIFO_ and is not sent to the IO-Link device. In SPI byte-by-byte write mode, the master message is deleted only if the complete master message has been loaded into the TxFIFO before transmission is initiated.

Establish-Communication Sequencer

The MAX14819 features an integrated IO-Link establishcommunication sequencer to autonomously perform the IO-Link establish-communication wake-up sequence. The wake-up sequence is the prerequisite for placing the device in IO-Link pre-operate and operate modes. Set the EstCom_ bit in the CQCtrl_ register to begin the autonomous establish-communication sequencer.
When the EstCom_ bit is set, the MAX14819 generates an $80 \mu \mathrm{~s}$ (typ) wake-up pulse on the CQ_ line and then autonomously determines the COM rate and minimum cycle time of the attached IO-Link device. No further direction is required from the SPI controller at this time. Once the sequence is successfully completed, the COM rate of the IO-Link device is stored in the ComRt_ bits of the CQCtrl_ register. Similarly, the minimum cycle time of the device is stored in the CyclTmr_ register.
If the first establish-communication sequence fails, the MAX14819 repeats the sequence again after a 30 ms delay. If the sequence fails again, a third attempt is made. If the third attempt fails, the MAX14819 stops attempting to establish communication with the device and a

WURQInt interrupt is generated, the EstCom_ bit is reset, and the CQ_ driver is returned to SIO mode after 300 ms (max). A new establish-communication sequence can then be initiated by the SPI controller by setting the EstCOM_bit.

Transmitter Synchronization

The start of master-message transmission can be synchronized on multiple IO-Link ports, so that ports that operate with the same cycle time receive the master message simultaneously. Triggering allows synchronization of master ports on one or many MAX14819 devices being driven by a common SPI. Assign the same trigger value to ports that will be synchronized in the TrigAssgn_ registers and enable synchronization by setting the TrigEn_bit.
Write an SPI trigger value to the Trigger register to initiate immediate transmission of the data in the TxFIFOs assigned to that trigger value. Trigger is a global SPI command and is not filtered by the SPI address bits, making it possible to synchronize the transmitters of multiple MAX14819 devices on a single SPI bus with a single trigger command.
Trigger functionality can also be used with the internal cycle timer. When configured for this, the cycle timer is immediately started when its trigger value is received.

Trigger Delay and Synchronization Accuracy

The delay between the time when the MAX14819 receives a trigger command and the time when the associated CQ_ transmitter starts transmission is made up of a fixed and a variable component, which depends on the UART data rate. The time (tTRIG) between the last rising edge of the serial clock (SCLK) and the beginning of the CQ_ START bit is:

- COM3: $0.813 \mu \mathrm{~s} \leq \mathrm{t}_{\text {TRIG }} \leq 1.085 \mu \mathrm{~s}$
- COM2: $4.881 \mu \mathrm{~s} \leq \mathrm{t}_{\text {TRIG }} \leq 6.508 \mu \mathrm{~s}$
- COM1: $39.060 \mu \mathrm{~s} \leq \mathrm{t}_{\text {TRIG }} \leq 52.080 \mu \mathrm{~s}$

The reference point is the time when the trigger command is received by the MAX14819. This occurs on the final (i.e., the 16th) SPI clock's low-to-high transition (Figure 13).
When synchronizing multiple CQ transmitters, the trigger delay skew of the CQ_ transmitter outputs is based on the triggering delays of each transmitter (see Figure 14). This skew has a baud-rate-dependent component, similar to the trigger accuracy equation for a single transmitter output. Calculate the CQ_ transmitter output skew using the following equation:

$$
\text { tTRIG_SKEW }(\max) \leq\left(4 B T_{S}-3 B T_{F}\right) / 16
$$

Where $B T$ is the bit time of the CQ_ data (= 1/COM rate), $B T_{S}$ is the bit time of the lower bit rate (e.g., COM1), and $B T_{F}$ is the bit time of the faster bit rate.

Figure 13. Trigger Delay

Figure 14. Master-Message Trigger Skew

When synchronizing ports that use the internal cycle timers, the skew between channels will be larger, ranging from $0 \mu \mathrm{~s}$ to $(\mathrm{BT} / 16+101 \mu \mathrm{~s})$.

Cycle Timer

The MAX14819 features two cycle timers (one for each CQ_ transceiver) that autonomously send the master message from the TxFIFO_ at predefined time intervals. The bits in the CycITmr_register set the time interval. The smallest cycle time supported by the cycle timer is $400 \mu \mathrm{~s}$.
The minimum cycle time of the attached IO-Link device is automatically determined during the establish-communication cycle and is stored in the CyclTmr_ register. The SPI master can overwrite these values with the cycle time required by the application.
To start the cycle timer sending the first master message, either send its trigger value or set the CQSend_ bit in the CQCtrl_ register.
At the start of each cycle, the CQ_ transmitter is enabled and the master message sent. The CQ_ transceiver is then automatically switched to receive mode (within 1 bit interval) and the MAX14819 waits for the IO-Link device response message. When the complete device message is received, an RxDataRdy_interrupt is triggered.
When the data ready interrupt is triggered, the SPI master must read out the device message from the RxFIFO. The following master message must then be written into the TxFIFO, if the TxKeepMsg_ bit is not set. A TxError_ interrupt is generated due to TCycleErr_ if the SPI master does not load the next master message in time.

Clocking

If external UARTs of a microcontroller are used, external clock sources are not required since the MAX14819 has adequate internal clocking. If the internal framers are used instead of external UARTs, external clocking from a crystal or clock source is required to achieve the timing accuracy required for IO-Link communication (Figure 15). Set the ClkDiv[1:0] bits in the Clock register to select the
input (crystal or clock) frequency: $3.686 \mathrm{MHz}, 7.372 \mathrm{MHz}$, or 14.745 MHz . Set the ComRt_[1:0] bits in the CQCtrl_ register to determine the COM rate on the CQ_interface. Set the ExtClockEn bit in the Clock register to enable clocking from an external clock source on the CLKI input. Set the XtalEn bit and clear the ExtClkEn bit if a crystal is used for clocking.
Set the CIkOEn bit in the Clock register to enable the clock signal on the CLKO output. When CIkOEn is set, a 3.6864 MHz clock output is routed to CLKO, allowing multiple MAX14819 transceivers to operate from a single crystal oscillator.
An internal oscillator is used for basic functionality when both the crystal oscillator and the external clock are disabled. SPI read/write functionality is also available when no valid external clock source is present.

LED Control

The MAX14819 features four logic outputs that can be used for driving LEDs: LD1A, LD1B, LD2A, LD2B. LED functionality is controlled by setting the bits in the LEDCtrl register.

Thermal Protection

Thermal Shutdown

The CQ_ drivers are automatically disabled when the driver temperature exceeds the $+160^{\circ} \mathrm{C}$ (typ) thermalshutdown threshold. Drivers are automatically switched on when the driver temperature falls below the thermalshutdown threshold plus hysteresis. The MAX14819 generates a thermal-shutdown interrupt (ThShdnCOR = 1) in the Status register when thermal shutdown occurs.

Overtemperature Warning

When the junction temperature exceeds the $+135^{\circ} \mathrm{C}$ (typ) overtemperature-warning threshold, the TempWarn bit in the Status register is set.
The TempWarn bit is cleared when the die temperature falls to $+120^{\circ} \mathrm{C}$ (typ).

Figure 15. Clock Generation

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

Register Map

REGISTER NAME	$\begin{gathered} \mathrm{CH} / \\ \text { GLOBAL } \end{gathered}$	REG ADDRESS	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
TxRxDataA	A	0×00	DataA7	DataA6	DataA5	DataA4	DataA3	DataA2	DataA1	DataA0
TxRxDataB	B	0×01	DataB7	DataB6	DataB5	DataB4	DataB3	DataB2	DataB1	DataB0
Interrupt	G	0×02	StatusInt	WURQInt	TxErrorB	TxErrorA	RxErrorB	RxErrorA	RxDataRdy	RxDataRdyA
InterruptEn	B	0×03	StatusIntEn	WURQIntEn	TxErrIntEnB	TxErrIntEnA	RxErrIntEnB	RxErrIntEnA	RDaRdyIntEnB	RxDaRdyIntEnA
RxFIFOLvIA	A	0×04	FifoLviA7	FifoLvIA6	FifoLviA5	FifoLvIA4	FifoLviA3	FifoLvIA2	FifoLvIA1	FifoLviAO
RxFIFOLvIB	B	0×05	FifoLvIB7	FifoLvIB6	FifoLviB5	FifoLvIB4	FifoLvIB3	FifoLvIB2	FifoLvIB1	FifoLvIB0
CQCtrIA	A	0×06	ComRtA1	ComRtA0	EstComA	WuPulsA	TxFifoRstA	RxFifoRstA	CycleTmrEnA	CQSendA
CQCtrlB	B	0×07	ComRtB1	ComRtB0	EstComB	WuPulsB	TxFifoRstB	RxFifoRstB	CycleTmrEnB	CQSendB
CQErrA	A	0×08	TransmErrA	TCycIErrA	TChksmErA	TSizeErrA	RChksmErA	RSizeErrA	FrameErrA	ParityErrA
CQErrB	B	0×09	TransmErrB	TCyclerrB	TChksmErB	TSizeErrB	RChksmErB	RSizeErrB	FrameErrB	ParityErrB
MsgCtrlA	A	0x0A	TxErDestroyA	SPIChksA	InsChksA	TSizeEnA	TxKeepMsgA	RChksEnA	RMessgRdyEnA	InvCQA
MsgCtriB	B	$0 \times 0 \mathrm{~B}$	TxErDestroyB	SPIChksB	InsChksB	TSizeEnB	TxKeepMsgB	RChksEnB	RMessgRdyEnA	InvCQB
ChanStatA	A	0x0C	RstA	FramerEnA	L+CLimCORA	UVL+CORA	CQFaultCORA	L+CLimA	UVL+A	CQFaultA
ChanStatB	B	0x0D	RstB	FramerEnB	L+CLimCORB	UVL+CORB	CQFaultCORB	L+CLimB	UVL+B	CQFaultB
LEDCtrI	G	0x0E	LEDEn2B	RxErrEnB	LEDEn1B	RxRdyEnB	LEDEn2A	RxErrEnA	LEDEn1A	RxRdyEnA
Trigger	G	0x0F	*	*	*	*	Triglnit3	Triglnit2	Triglnit1	Triglnit0
CQCfgA	A	0x10	IEC3ThA	SourceSinkA	SinkSelA1	SinkSelA0	NPNA	PushPulA	DrvDisA	CQFilterEnA
CQCfgB	B	0x11	IEC3ThB	SourceSinkB	SinkSelB1	SinkSelB0	NPNB	PushPulB	DrvDisB	CQFilterEnB
CyclTmrA	A	0×12	TCyclBsA1	TCyclBsA0	TCycIMA5	TCycIMA4	TCycIMA3	TCycIMA2	TCycIMA1	TCycIMA0
CyclTmrB	B	0×13	TCyclBsB1	TCyclBsB0	TCycIMB5	TCycIMB4	TCycIMB3	TCycIMB2	TCycIMB1	TCycIMB0
DeviceDlyA	A	0x14	DelayErrA	BDelayA1	BDelayA0	DDelayA3	DDelayA2	DDelayA1	DDelayA0	RspnsTmrEnA
DeviceDlyB	B	0×15	DelayErrB	BDelayB1	BDelayB0	DDelayB3	DDelayB2	DDelayB1	DDelayB0	RspnsTmrEnB
TrigAssgnA	A	0x16	TrigA3	TrigA2	TrigA1	TrigA0	*	*	*	TrigEnA
TrigAssgnB	B	0×17	TrigB3	TrigB2	TrigB1	TrigB0	*	*	*	TrigEnB
L+CnfgA	A	0x18	L+RTA1	L+RTAO	L+DynBLA	L+BLA1	L+BLA0	L+CL2xA	L+CLimDisA	L+EnA
L+CnfgB	B	0x19	L+RTB1	L+RTB0	L+DynBLB	L+BLB1	L+BLB0	L+CL2xB	L+ClimDisB	L+EnB
IOStCfgA	A	$0 \times 1 \mathrm{~A}$	DiLevelA	CQLevelA	TxEnA	TxA	DiFilterEnA	DiEC3ThA	DiCSourceA	DiCSinkA
IOStCfgB	B	0x1B	DiLevelB	CQLevelB	TxEnB	TxB	DiFilterEnB	DiEC3ThB	DiCSourceB	DiCSinkB
DrvrCurrLim	G	0x1C	CL1	CLO	CLDis	CLBL1	CLBLO	TAr1	TArO	ArEn
Clock	G	0x1D	VCCWarnEn	TXTXENDis	*	ClkOEn	ClkDiv1	ClkDiv0	ExtCIkEn	XtalEn
Status	G	x01E	ThShdnCOR	ThWarnCOR	VCCUVCOR	VCCWarnCOR	ThShdn	TempWarn	VCCUV	VCCWarn
RevID	G	0x1F	*	*	*	*	ID3	ID2	ID1	IDO

*Bit is unused.

Register Description

TxRxDataA Register [0x00]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	DataA7	DataA6	Data5	DataA4	DataA3	DataA2	DataA1	DataA0
READ/WRITE	R / W							
POR STATE	X	X	X	X	X	X	X	X
RESET UPON READ	N	N	N	N	N	N	N	N

The TxRxDataA register allows writing data into the channel A TxFIFOA and reading data received out of the channel A RxFIFOA. Data can be written into the TxFIFOA and read out of the RxFIFOA in either byte-by-byte mode or burst mode. When using SPI burst mode, multiple bytes can be written to/read from the FIFOs in a single SPI cycle. Reading the RxFIFOA after it is empty results in random values.
RxFIFOA and TxFIFOA are available when framer A is enabled by setting the FramerEnA bit in the ChanStatA register.

BIT	NAME	
$7: 0$	DataA	Channel A TxFIFO/RxFIFO data

TxRxDataB Register [0x01]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	DataB7	DataB6	DataB5	DataB4	DataB3	DataB2	DataB1	DataB0
READ/WRITE	R / W							
POR STATE	X	X	X	X	X	X	X	X
RESET UPON READ	N	N	N	N	N	N	N	N

The TxRxDataB register allows writing data into the channel B TxFIFOB and reading data received out of the channel B RxFIFOB. Data can be written into the TxFIFOB and read out of the RxFIFOB in either byte-by-byte mode or burst mode. When using SPI burst mode, multiple bytes can be written to/read from the FIFOs in a single SPI cycle. Reading the RxFIFOB after it is empty results in random values. Reading the RxFIFOB after it is empty results in random values. RxFIFOB and TxFIFOB are available when framer B is enabled by setting the FramerEnB bit in the ChanStatB register.

BIT	NAME	
$7: 0$	DataB	Channel B TxFIFO/RxFIFO data

Interrupt Register [0x02]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	StatusInt	WURQInt	TxErrorB	TxErrorA	RxErrorB	RxErrorA	RxDataRdyB	RxDataRdyA
READ/WRITE	R	R	R	R	R	R	R	R
POR STATE	0	0	0	0	0	0	0	0
RESET UPON READ	Y	Y	Y	Y	Y	Y	N	N

BIT	NAME	DESCRIPTION
7	StatusInt	Status Error Interrupt This bit is set when a supply error or thermal error L+ supply error, or CQ_driver error occurs. See Figure 16.
6	WURQInt	Wake-Up Request Interrupt This bit is set when the establish-communication sequencer is either successfully or unsuccessfully completed after an EstCom_ sequence is initiated. See the CQCntrl register for more information.
5	TxErrorB	Channel B Transmitter Error Interrupt This bit is set when an error is detected on the channel B transmitter (CQB). Details on the type of error can be read out of the CQErrB register. See Figure 17.
4	TxErrorA	Channel A Transmitter Error Interrupt This bit is set when an error is detected on the channel A transmitter (CQA). Details on the type of error can be read out of the CQErrA register. See Figure 17.
3	RxErrorB	Channel B Receiver Error Interrupt This bit is set when a receive error is detected on CQB. Details on the receive error can be read out of the CQErrB or DevicDelyB register. Optionally, the status of the RxErrorB bit can be made available on the $\overline{R X E R R B} / L D 2 B$ pin. Set the RxErrEnB bit in the LEDCtrl register to 1 to assert the $\overline{\text { RXERRB/LD2B pin when }}$ RxErrorB is set. See Figure 18.
2	RxErrorA	Channel A Receiver Error Interrupt This bit is set when a receive error is detected on CQA. Details on the receive error can be read out of the CQErrA register. Optionally, the status of the RxErrorA bit can be made available on the $\overline{\text { RXERRA/LD2A pin. Set the RxErrEnB bit in the }}$ LEDCtrl register to 1 to assert the RXERRA/LD2A pin when RxErrorA is set. See Figure 18.
1	RxDataRdyB	Channel B Receiver Data Ready Interrupt RxDataRdyB is set when the first byte of data is received by the channel B RxFIFO. The RxDataRdyB interrupt is set when the RxFIFOB level changes from empty to at least one received word. If RMessgRdyEnB $=1$, RxDataRdyB is set when a complete M-sequence frame was received correctly and is ready for SPI readout from TxRxDataB. Set the RxRdyEnB bit in the LEDCtrl register to 1 to assert the $\overline{R X R D Y B / L D 1 B ~ p i n ~ w h e n ~ R x D a t a R d y B ~ i s ~ s e t . ~}$ RxDataRdyB is cleared when the TxRxDataB register is read.
0	RxDataRdyA	Channel A Receiver Data Ready Interrupt RxDataRdyaA is set when the first byte of data is received by the channel A RxFIFO. The RxDataRdyA interrupt is set when the RxFIFOA level changes from empty to at least one received word. If RMessageRdyEnA $=1, R x D a t a R d y A$ is set when a complete M-sequence frame was received correctly and is ready for SPI readout from TxRxDataA. Set the RxRdyEnA bit in the LEDCtrl register to 1 to assert the $\overline{\text { RXRDYA/LD1A pin when RxDataRdyA is set. }}$ RxDataRdyA is cleared when TxRxDataA is read.

Figure 16. StatusInt Interrupt Triggers

Figure 17. TxError_ Triggers

Figure 18. RxError_Triggers

InterruptEn Register [0x03]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	StatusIntEn	WURQIntEn	TxErrlntEnB	TxErrlntEnA	RxErrlntEnB	RxErrlntEnA	RDaRdyIntEnB	RDaRdyIntEnA
READ/WRITE	R/W							
POR STATE	0	0	0	0	0	0	0	0
RESET UPON READ	N	N	N	N	N	N	N	N

BIT	NAME	DESCRIPTION
7	StatusIntEn	Status Interrupt Enable Set the StatIntEn bit to 1 to assert the $\overline{\mathrm{RQ}}$ output when a StatusInt interrupt is generated. Clear the StatusIntEn bit to disable/mask the $\overline{\mathrm{IRQ}}$ output when a StatusInt interrupt is generated.
6	WURQIntEn	Wake-Up Request Interrupt Enable Set the WURQIntEn bit to 1 to assert the $\overline{\mathrm{IRQ}}$ output when a WURQInt interrupt is generated. Clear the WURQIntEn bit to disable/mask the $\overline{\mathrm{IRQ}}$ output when a WURQInt interrupt is generated.
5	TxErrIntEnB	Channel B Transmitter Error Interrupt Enable Set the TxErrIntEnB bit to 1 to assert the $\overline{\mathrm{RQ}}$ output when a TxErrorB interrupt is generated. Clear the TxErrIntEn bit to disable/mask the $\overline{\mathrm{RQ}}$ output when a TxErrorB interrupt is generated.
4	TxErrIntEnA	Channel A Transmitter Error Interrupt Enable Set the TxErrIntEnA bit to 1 to assert the $\overline{\mathrm{RQ}}$ output when a TxErrorA interrupt is generated. Clear the TxErrIntEn bit to disable/mask the $\overline{\mathrm{IRQ}}$ output when a TxErrorA einterrupt is generated.
3	RxErrIntEnB	Channel B Receiver Error Interrupt Enable Set the RxErrIntEnB bit to 1 to assert the $\overline{\mathrm{RQ}}$ output when a RxErrorB interrupt is generated. Clear the RxErrIntEnB bit to disable/mask the $\overline{\mathrm{RQ}}$ output when a RxErrorB interrupt is generated. . The RxErrIntEnB bit does not mask or enable the $\overline{\text { RXERRB/LD2B pin. }}$

InterruptEn Register [0x03] (continued)

BIT	NAME	DESCRIPTION
2	RxErrIntEnA	Channel A Receiver Error Interrupt Enable Set the RxErrIntEnA bit to 1 to assert the $\overline{\mathrm{RQ}}$ output when a RxErrorA interrupt is generated. Clear the RxErrIntEnA bit to disable/mask the $\overline{\mathrm{IRQ}}$ output when a RxErrorA interrupt is generated. The RxErrIntEnA bit does not mask or enable the $\overline{\text { RXERRA/LD2A pin. }}$
1	RDaRdylntEnB	Channel B Receiver Data Ready Interrupt Enable Set the RDaRdyIntEnB bit to 1 to assert the $\overline{\mathrm{IRQ}}$ output when a RxDataRdyB interrupt is generated. Clear the RDaRdyIntEnB bit to disable/mask the $\overline{\mathrm{RQ}}$ output when a RxDataRdyB interrupt is generated. The RDaRdyIntEnB bit does not mask or enable the $\overline{\text { RXRDYB/LD1B pin. }}$
0	RDaRdyIntEnA	Channel A Receiver Data Ready Interrupt Enable Set the RDaRdyIntEnA bit to 1 to assert the $\overline{\mathrm{RQ}}$ output when a RxDataRdyA interrupt is generated. Clear the RDaRdyIntEnA bit to disable/mask the $\overline{\mathrm{RQ}}$ output when a RxDataRdyA interrupt is generated. The RDaRdyIntEnA bit does not mask or enable the $\overline{\text { RXRDYA/LD1A pin. }}$

RxFIFOLvIA Register [0x04]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	FifoLvIA7	FifoLvIA6	FifoLvIA5	FifoLvIA4	FifoLvIA3	FifoLvIA2	FifoLvIA1	FifoLvIA0
READ/WRITE	R	R	R	R	R	R	R	R
POR STATE	0	0	0	0	0	0	0	1
RESET UPON READ	N	N	N	N	N	N	N	N

The RxFIFOLvIA register shows the current number of device message bytes in the RxFIFOA. This changes as data is read out of the RxFIFOA and as the RxFIFOA fills up. The MAX14819 adds one byte, at the start of the RxFIFOA data, which is the number of device message bytes that were received; the RxFIFOLvIA value does not include this added byte.
Note: Due to the limitations of simultaneous access, the value read from the RxFIFOLvIA register may be off by ± 1 word while the receiver is receiving data. The value read from RxFIFOLvIA is correct while the receiver is not receiving data.

BIT	NAME	DESCRIPTION
$7: 0$	FifoLvIA	Channel A Receive FIFO Device Message Level

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

RxFIFOLvIB Register [0x05]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	FifoLvIB7	FifoLvIB6	FifoLvIB5	FifoLvIB4	FifoLvIB3	FifoLvIB2	FifoLvIB1	FifoLvIB0
READ/WRITE	R	R	R	R	R	R	R	R
POR STATE	0	0	0	0	0	0	0	0
RESET UPON READ	N	N	N	N	N	N	N	N

The RxFIFOLvIB register shows the current number of device message bytes in the RxFIFOB. This changes as data is read out of the RxFIFOB and as the RxFIFOB fills up. The MAX14819 adds one byte, at the start of the RxFIFOB data, which is the number of device message bytes that were received; the RxFIFOLvIB value does not include this added byte.
Note: Due to the limitations of simultaneous access, the value read from the RxFIFOLvIB register may be off by ± 1 word while the receiver is receiving data. The value read from RxFIFOLvIB is correct while the receiver is not receiving data.

BIT	NAME	DESCRIPTION
$7: 0$	FifoLvIB	Channel B Receive FIFO Device Message Level

CQCtrIA Register [0x06]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	ComRtA1	ComRtA0	EstComA	WuPulsA	TxFifoRstA	RxFifoRstA	CycleTmrEnA	CQSendA
READ/WRITE	R/W							
POR STATE	0	0	0	0	0	0	0	0
RESET UPON READ	N	N	N	N	N	N	N	N

BIT	NAME	DESCRIPTION
[7:6]	ComRtA1, ComRtA0	Channel A CQ (CQA) COM Rate Setting The ComRtA[1:0] bits set the COM data rate on the CQA interface. Once the establish-communication sequence, intiated with EstComA, is successfully completed, the COM rate of the IO-link device will be stored in these bits as follows: $\begin{aligned} & \text { 00: } \text { Detection failure }(230.4 \mathrm{kbps}) \\ & \text { 01: } \text { COM1 }=4.8 \mathrm{kbps} \\ & \text { 10: } \text { COM2 }=38.4 \mathrm{kbps} \\ & \text { 11: } \text { COM3 }=230.4 \mathrm{kbps} \end{aligned}$

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

CQCtrIA Register [0x06] (continued)

BIT	NAME	DESCRIPTION
5	EstComA	Channel A Establish-Communication Sequence Enable Set the EstComA to 1 to initiate an IO-Link establish-communication sequence on CQA. After successful completion of the establish communication sequence, a WURQInt interrupt is generated and the EstComA bit changes to 0 . During the generated wake-up pulse, the CQA current limit is temporarily set above 500 mA internally, although the CL_ register bits are not changed. The COM rate of the IO-Link device is then reflected by the ComRt0A and ComRt1A bits and the device cycle time can be read out of the CyclTimeA register. If the establish-communication sequence was not successful, a WURQInt interrupt is generated and EstComA is 0 and the ComRt1A and ComRt0A bits both $=0$. The FramerEnA bit must be 1 to use the EstComA function.
4	WuPulsA	Channel A Wake-Up Pulse Generate Set WuPulsA to 1 to immediately generate a wake-up pulse/request (WURQ) on CQA. Following the wake-up request, the CQA transceiver is set into receive mode. WuPulsA is reset to 0 after the WURQ is completed. WuPulsA is used when the microcontroller manages the establish communication sequence and the EstComA funciton is not used.
3	TxFifoRstA	Channel A TX FIFO (TxFIFOA) Reset Set TxFifoRstA to reset the TxFIFOA. This may be necessary if an SPI transmission error is detected when filling the TxFIFOA or if a CQA transmission error is detected.
2	RxFifoRstA	Channel A RX FIFO (RxFIFOA) Reset Set RxFifoRstA to reset the RxFIFOA. This may be necessary if an RSizeErrA event occurs.
1	CycleTmrEnA	Channel A Cycle Timer Enable Set CyclTmrEnA to 1 to enable the channel A cycle time. CyclTmrEnA does not start the cycle timer. Cycle timer A starts when the CQSendA bit is set to 1 (after the timer is enabled) or an associated trigger command is received. Set CyclTmrEnA to 0 to stop the cycle timer. The timer can be stopped at any time, even if the current cycle is not yet complete.
0	CQSendA	Channel A Initiate Master Message Set CQSendA to 1 to initiate transmission of the master message in the channel A transmit FIFO (TxFIFOA). The CQA transceiver is put into transmit mode and sends the master message/data in the TxFIFOA. When the master message is complete/TxFIFOA is empty, the CQA transceiver is set to receive mode to receive device messages. If CycITmrEnA $=1$, setting CQSendA to 1 also starts cycle timer A. CQSendA is automatically cleared.

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

CQCtrIB Register [0x07]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	ComRtB1	ComRtB0	EstComB	WuPulsB	TxFifoRstB	RxFifoRstB	CycleTmrEnB	CQSendB
READ/WRITE	R / W							
POR STATE	0	0	0	0	0	0	0	0
RESET UPON READ	N	N	N	N	N	N	N	N

BIT	NAME	DESCRIPTION
[7:6]	ComRtB1, ComRtB0	Channel B CQ (CQB) COM Rate Setting The ComRtB[1:0] bits set the COM data rate on the CQB interface. Once the establish-communication sequence, intiated with EstComB, is successfully completed, the COM rate of the IO-link device will be stored in these bits as follows: $\begin{aligned} & \text { 00: Detection failure }(230.4 \mathrm{kbps}) \\ & \text { 01: } \text { COM1 }=4.8 \mathrm{kbps} \\ & \text { 10: } \text { COM2 }=38.4 \mathrm{kbps} \\ & \text { 11: } \text { COM3 }=230.4 \mathrm{kbps} \end{aligned}$
5	EstComB	Channel B Establish-Communication Sequence Set the EstComB to 1 to initiate an IO-Link establish-communication sequence on CQB. After successful completion of the establish communication sequence, a WURQInt interrupt is generated and the EstComB bit changes to 0 . During the generated wake-up pulse, the CQB current limit is temporarily set above 500 mA internally, although the CL_register bits are not changed. The COM rate of the IO-Link device is then reflected by the ComRt0A and ComRt1A bits and the device cycle time can be read out of the CyclTimeB register. If the establish-communication sequence was not successful, a WURQInt interrupt is generated and EstComB is 0 and the ComRt1B and ComRt0B bits both $=0$. The FramerEnB bit must be 1 to use the EstComB function.
4	WuPulsB	Channel B Wake-Up Pulse Generate Set WuPulsB to 1 to immediately generate a wake-up pulse/request (WURQ) on CQB. Following the wake-up request, the CQB transceiver is set into receive mode. WuPulsB is reset to 0 after the WURQ is completed. WuPulsA is used when the microcontroller manages the establishcommunication sequence and the EstComB function is not used.

CQCtrIB Register [0x07] (continued)

BIT	NAME	DESCRIPTION
3	TxFifoRstB	Channel B TX FIFO (TxFIFOA) Reset Set TxFifoRstB to reset the TxFIFOB. This may be necessary if an SPI transmission error is detected when filling the TxFIFOB or if a CQB transmission error is detected.
2	RxFifoRstB	Channel B RX FIFO (RxFIFOA) Reset Set RxFifoRstA to reset the RxFIFOA. This may be necessary if an RSizeErrA event occurs.
1	CyclTmrEnB	Channel B Cycle Timer Enable Set CyclTmrEnB to 1 to enable the channel B cycle time. CyclTmrEnB does not start the cycle timer. Cycle timer B starts when the CQSendB bit is set to 1 (after the timer is enabled) or an associated trigger command is received. Set CyclTmrEnB to 0 to stop the cycle timer. The timer can be stopped at any time, even if the current cycle is not yet complete.
0	CQSendB	Channel B Initiate Master Message Set CQSendB to 1 to initiate transmission of the master message in the channel B transmit FIFO (TxFIFOB). The CQB transceiver is put into transmit mode and sends the master message/data in the TxFIFOB. When the master message is complete/TxFIFOB is empty, the CQB transceiver is set to receive mode to receive device messages. If CyclTmrEnB $=1$, setting CQSendB to 1 also starts cycle timer B. CQSendB is automatically cleared.

CQErrA Register [0x08]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	TransmErrA	TCycIErrA	TChksmErA	TSizeErrA	RChksmErA	RSizeErrA	FrameErrA	ParityErrA
READ/WRITE	R	R	R	R	R	R	R	R
POR STATE	0	0	0	0	0	0	0	0
RESET UPON READ	Y	Y	Y	Y	Y	Y	Y	Y

BIT	NAME	DESCRIPTION
7	TransmErrA	Channel A Transmission Error This bit is set when the message sent on Channel A was not properly sent. The bit is cleared when the CQErrA register is read.

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

CQErrA Register [0x08] (continued)

BIT	NAME	DESCRIPTION
6	TCycIErrA	Channel A Transmission Cycle Error This bit is set when when no data is loaded into the TxFIFOA before the start of the master message transmission. At least one octet must be loaded into TxFIFOA at the start of the transmission cycle. This bit is only active when the internal cycle timer is used (CycTmrEnA = 1). The bit is cleared when the CQErrA register is read.
5	TChksmErA	Channel A Transmitter Checksum Error This bit is set when the checksum calculated by the MAX14819 on the master message is different to the checksum written in the TxFIFOA by the SPI master. A checksum error indicates an SPI transmission error. This bit is only active when SPIChksA $=1$. If TChksmErA $=1$, the master message is not sent to the device when the autonomous cycle timer A is enabled. The bit is cleared when the CQErrA register is read.
4	TSizeErrA	Channel A Transmitter Size Error This bit is set when the number of octets in the master message differs from the TxBytes value written into the TxFIFOA. This can occur as a result of slow SPI master writing of the master message into TxFIFOA while CQA transmission has started, so that the master message cannot be sent in the allocated time. When this error occurs, it is recommended that the controller delete the TxFIFOA (TxFIFORstA = 1) and repeat the master message transmission. The bit is cleared when the CQErrA register is read.
3	RChksmErA	Channel A Receiver Checksum Error This bit is set when a 6-bit checksum calculated by the MAX14819 differs from the checksum in the received device message. The bit is cleared when the CQErrA register is read.
2	RSizeErrA	Channel A Receiver Size Error This bit is set when the number of octets received for the device differs from RxBytes previously loaded into TxFIFOA. The bit is cleared when the CQErrA register is read.
1	FrameErrA	Channel A Frame Error This bit is set when a UART frame error is detected on the data received on the CQA receiver. A FrameErrA error triggers a RxErrorA interrupt. The bit is cleared when the CQErrA register is read.
0	ParityErrA	Channel A Parity Error This bit is set when a UART parity error is detected on a word received by the CQA receiver. A ParityErrA interrupt triggers an RxErrorA interrupt in the Interrupt register. The bit is cleared when the CQErrA register is read.

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

CQErrB Register [0x09]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	TransmErrB	TCycIErrB	TChksmErB	TSizeErrB	RChksmErB	RSizeErrB	FrameErrB	ParityErrB
READ/WRITE	R	R	R	R	R	R	R	R
POR STATE	0	0	0	0	0	0	0	0
RESET UPON READ	Y	Y	Y	Y	Y	Y	Y	Y

| BIT | NAME | DESCRIPTION |
| :---: | :--- | :--- |$|$| 7 | TransmErrB |
| :--- | :--- |
| 6 | TCycIErrB |
| 5 | Channel B Transmission Error
 This bit is set when the message sent on Channel B was not properly
 sent. The bit is cleared when the CQErrB register is read. |
| TChksmErB | Channel B Transmission Cycle Error
 This bit is set when when no data is loaded into the TxFIFOB before the
 start of the master message transmission. At least one octet must be
 loaded into TxFIFOB at the start of the transmission cycle. This bit is only
 active when the internal cycle timer is used (CycITmrEnB = 1). The bit is
 cleared when the CQErrB register is read. |
| 4 | Channel B Transmitter Checksum Error
 This bit is set when the checksum calculated by the MAX14819 on the
 master message is different to the checksum written in the TxFIFOB by
 the SPI master. A checksum error indicates an SPI transmission error.
 This bit is only active when SPIChksB = 1. If TChksmErB = 1, the master
 message is not sent to the device when the autonomous cycle timer B is
 enabled. The bit is cleared when the CQErrB register is read. |
| 4 | Channel B Transmitter Size Error
 This bit is set when the number of octects in the master message differs
 from the TxBytes value written into the TxFIFOB. This can occur as a
 result of slow SPI master writing of the master message into TxFIFOB
 while CQB transmission has started, so that the master message cannot
 be sent in the allocated time. When this error occurs, it is recommended
 that the controller delete the TxFIFOB (TxFIFORstB = 1) and repeat
 the master message transmission. The bit is cleared when the CQErrB
 register is read. |
| TSizeErrB | |

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

CQErrB Register [0x09] (continued)

BIT	NAME	DESCRIPTION
3	RChksmErB	Channel B Receiver Checksum Error This bit is set when a 6-bit checksum calculated by the MAX14819 differs from the checksum in the received device message. The bit is cleared when the CQErrB register is read.
2	RSizeErrB	Channel B Receiver Size Error This bit is set when the number of octets received for the device differs from RxBytes previously loaded inot TxFIFOB. The bit is cleared when the CQErrB register is read.
1	FrameErrB	Channel B Frame Error This bit is set when a UART frame error is detected on the data received on the CQB receiver. A FrameErrB error triggers a RxErrorB interrupt. The bit is cleared when the CQErrBregister is read.
0	ParityErrB	Channel B Parity Error This bit is set when a UART parity error is detected on a word received by the CQB receiver. A ParityErrB interrupt triggers an RxErrorB interrupt in the Interrupt register. The bit is cleared when the CQErrB register is read.

MsgCtrIA Register [0x0A]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	TxErDestroyA	SPIChksA	InsChksA	TSizeEnA	TxKeepMsgA	RChksEnA	RMessgRdyEnA	InvCQA
READ/WRITE	R/W							
POR STATE	0	0	0	0	0	0	0	0
RESET UPON READ	N	N	N	N	N	N	N	N

BIT	NAME	DESCRIPTION
7	TxErDestroyA	ChanneI A TxFIFOA Message Delete on Error Set TxErDestroyA $=1$ to instruct the MAX14819 to automatically delete the message in the TxFIFOA (reset TxFIFOA) when a checksum or size error is detected in the message. This is only possible when a complete master message is loaded in the the TxFIFOA before transmission starts.

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

MsgCtrIA Register [0x0A] (continued)

BIT	NAME	DESCRIPTION
6	SPIChksA	Channel A SPI Checksum Verify Set SPIChksA = 1 to enable checking of the SPI checksum that the SPI master wrote into the CKT octet compared to the calculated checksum. This bit is independent of InsChksA. When a checksum disparity is found, the TChksmErA bit is set in the CQErrA register.
5	InsChksA	Channel A Insert Checksum Set InsChksA = 1 to instruct the MAX14819 to calculate the 6-bit checksum on the master message residing in TxFIFOA and insert this into the CKT byte. The bits written by the SPI master into these 6 bits are replaced.
4	TSizeEnA	Channel A TxFIFOA Size Check Enable Set TSizeEnA = 1 to require the MAX14819 to verify that the number of bytes in the TxFIFOA is equal to the TxBytes value written into the TxFIFOA. If the master message is loaded before transmission starts, a TxErrA interrupt is generated and the message can be deleted by the MAX14819 ($w h e n$ TxErDestroyA = 1). If the transmission has started before the whole message is loaded, then the message cannot be automatically deleted.
3	TxKeepMsgA	Channel A Keep TxFIFO Message Enable Set TxKeepMsgA = 1 to stop the MAX14819 from clearing the TxFIFOA after the message has been sent. This allows sending the same master message on the following cycle. When TxKeepMsgA = 0, the data in the TxFIFOA is automatically cleared after the message has been sent.
2	RChksEnA	Channel A Device Message Checksum Enable Set RChksEnA = 1 to enable the MAX14819 to check the device message checksum in the RxFIFOA. If an error is detected during the checksum check, the RChksmErA bit is set.
1	RMessgRdyEnA	Channel A Received Message Ready Set RMessgRdyEnA = 1 to generate a RxDataRdyA interrupt when the complete device response message is received and has no errors. When RMessgRdyEnA = 0, a RxDataRdyA interrupt is generated as soon as the first word is received in the RxFIFOA.
0	InvCQA	Channel A Logic Invert Set $\operatorname{InvCQA}=1$ to switch the polarity of the CQA output for transmission and reception. when InvCQA $=0$, TXA and RXA are logic inverts of CQA. When $\operatorname{InvCQA}=1$, TXA and RXA follow CQA, logically.

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

MsgCtrlB [0x0B]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	TxErDestroyB	SPICnksB	InsChksB	TSizeEnB	TxKeepMsgB	RChksEnb	RMessgRdyEnb	InvCQB
READ/WRITE	R/W							
POR STATE	0	0	0	0	0	0	0	0
RESET UPON READ	N	N	N	N	N	N	N	N

BIT	NAME	DESCRIPTION
7	TxErDestroyB	Channel B TxFIFOB Message Delete on Error Set TxErDestroyB = 1 to instruct the MAX14819 to automatically delete the message in the TxFIFOB (reset TxFIFOB) when a checksum or size error is detected in the message. This is only possible when a complete master message is loaded in the the TxFIFO before transmission starts.
6	SPIChksB	Channel B SPI Checksum Verify Set SPIChksB = 1 to enable checking of the SPI checksum that the SPI master wrote into the CKT octet compared to the calculated checksum. This bit is independent of InsChksB. When a checksum disparity is found, the TChksmErB bit is set in the CQErrB register.
5	InsChksB	Channel B Insert Checksum Set InsChksB = 1 to instruct the MAX14819 to calculate the 6-bit checksum on the master message residing in TxFIFOB and inster this into the CKT byte. The bits written by the SPI master into these 6 bits are replaced.
4	TSizeEnB	Channel B TxFIFOB Size Check Enable Set TSizeEnB = 1 to require the MAX14819 to verify that the number of bytes in the TxFIFOB is equal to the TxBytes value written into the TxFIFOB. If the master message is loaded before transmission starts, a TxErrB interrupt is generated and the message can be deleted by the MAX14819 (when TxErDestroyB = 1). If the transmission has started before the whole message is loaded, then the message cannot be automatically deleted.

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

MsgCtrIB [0x0B] (continued)

BIT	NAME	DESCRIPTION
3	TxKeepMsgB	Channel B Keep TxFIFO Message Enable Set TxKeepMsgB = 1 to stop the MAX14819 from clearing the TxFIFOB after the message has been sent. This allows sending the same master message on the following cycle. When TxKeepMsgB = 1, the TxFIFOB must be cleared by setting the TxFIFORstB bit. When TxKeepMsgB = 0, the data in the TxFIFOB is automatically cleared after the message has been sent.
2	RChksEnB	Channel B Device Message Checksum Enable Set RChksEnB = 1 to enable the MAX14819 to check the device message checksum in the RxFIFOB. If an error is detected during the checksum check, the RChksmErB bit is set.
1	RMessgRdyEnB	Channel B Received Message Ready Set RMessgRdyEnB = 1 to generate a RxDataRdyB interrupt when the complete device response message is received and has no errors. When RMessgRdyEnB = 0, a RxDataRdyB interrupt is generated as soon as the first word is received by the RxFIFOB.
0	InvCQB	Channel B Logic Invert Set InvCQB = 1 to switch the polarity of the CQB output for transmission and reception. when InvCQB = 0, TXB and RXB are logic inverts of CQB. When InvCQB = 1, TXB and RXB follow CQB, logically.

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

ChanStatA Register [0x0C]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	RstA	FramerEnA	L+CLimCORA	UVL+CORA	CQFaultCORA	L+CLimA	UVL+A	CQFaultA
READ/WRITE	R / W	R / W	R	R	R	R	R	R
POR STATE	0	0	X	X	0	X	X	0
RESET UPON READ	N	N	Y	Y	Y	N	N	N

BIT	NAME	DESCRIPTION
7	RstA	Channel A Register Reset Set RstA = 1 to reset all channel A register bits, the TxFIFOA, and RxFIFOA. Channel B registers and global register bits are not affected. RstA is cleared automatically when the channel A registers have been reset.
6	FramerEnA	Channel A Framer Enable Set FramerEnA = 1 to enable the internal message handler, RxFIFOA, and TxFIFOA. When an external UART is used (the internal framer is not used), set FramerEnA $=0$ and connect the external UART to the TXENA, TXA, and RXA pins.
5	L+CLimCORA	Channel A L+A Current Limit Latched Clear-on-read flag of the L+ClimA bit. This bit is set only when the L+CLimA bit transitions from 0 to 1 . This bit can generate a StatusInt interrupt.
4	UVL+CORA	Channel A L+A UnderVoltage Latched Clear-on-read flag of the UVL+A bit. This bit is set only when the UVL+A bit transitions from 0 to 1 . This bit can generate a StatusInt interrupt.
3	CQFaultCORA	Channel A CQ Driver Fault Latched Clear-on-read flag of the CQFaultA bit. This bit is set only when the CQFaultA bit transitions from 0 to 1 . This bit can generate a StatusInt interrupt.
2	L+CLimA	Channel A L+A Current Limit Real Time This bit is set when the L+A sensor supply load current exceeds the current-limit threshold set by the sense resistor for longer than the programmed current-limit blanking time (see the L+CnfgA register for more information). $L+C L i m A$ is cleared when the $L+A$ supply exits autoretry current limiting.
1	UVL+A	Channel A L+A Undervoltage Real Time This bit is set when the $L+$ A supply voltage falls below 18 V (typ). The bit is cleared when the $L+$ A voltage rises above 18 V (typ).
0	CQFaultA	Channel A CQ Driver Fault Real Time This bit is set when a fault is detected on the CQA driver. The fault can be an overload condition, for example an overcurrent of thermal-shutdown event.

ChanStatB Register [0x0D]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	RstB	FramerEnB	L+CLimCORB	UVL+CORBr	CQFaultCORB	L+CLimB	UVL+B	CQFaultB
READ/WRITE	R / W	R / W	R	R	R	R	R	R
POR STATE	0	0	X	X	0	X	X	0
RESET UPON READ	N	N	Y	Y	Y	N	N	N

BIT	NAME	DESCRIPTION
7	RstB	Channel B Register Reset Set RstB = 1 to reset all channel B register bits, the TxFIFOB, and RxFIFOB. Channel A registers and global register bits are not affected. RstB is cleared automatically when the channel B registers have been reset.
6	FramerEnB	Channel B Framer Enable Set FramerEnB = 1 to enable the internal UARTB, message handler, RxFIFOB, and TxFIFOB. When an external UART is used (the internal framer is not used), set FramerEnA = 0 and connect the external UART to the TXENA, TXA, and RXA pins.
5	L+CLimCORB	Channel B L+B Current Limit Latched Clear-on-read flag of the L+ClimB bit. This bit is set when the L+CLimB bit transitions from 0 to 1 . This bit can generate a StatusInt interrupt.
4	UVL+CORB	Channel B L+B UnderVoltage Latched Clear-on-read flag of the UVL+B bit. This bit is set only when the UVL+B bit transitions from 0 to 1 . This bit can generate a StatusInt interrupt.
3	CQFaultCORB	Channel B CQ Driver Fault Latched Clear-on-read flag of the CQFaultB bit. This bit is set only when the CQ- FaultB bit transitions from 0 to 1 . This bit can generate a StatusInt interrupt.
2	L+CLimB	Channel B L+B Current Limit Real Time This bit is set when the L+B sensor supply load current exceeds the current-limit threshold set by the sense resistor for longer than the programmed current-limit blanking time (see the LpCfgB register for more information). L+CLimB is cleared when the L+B supply exits autoretry current limiting.
1	UVL+B	Channel B L+B Undervoltage Real Time This bit is set when the $L+B$ supply voltage falls below 18 V (typ). The bit is cleared when the L+B voltage rises above 18 V (typ).
0	CQFaultB	Channel B CQ Driver Fault Real Time This bit is set when a fault is detected on the CQB driver. The fault can be an overload condition, for example an overcurrent of thermal-shutdown event.

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

LEDCtrl Register [0x0E]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	LEDEn2B	RxErrEnB	LEDEn1B	RxRdyEnB	LEDEn2A	RxErrEnA	LEDEn1A	RxRdyEnA
READ/WRITE	R/W							
POR STATE	0	0	0	0	0	0	0	0
RESET UPON READ	N	N	N	N	N	N	N	N

BIT	NAME	DESCRIPTION
7	LEDEn2B	Channel B LD2B LED Driver Control Set LEDEn2B $=1$ to turn on a LED connected to $\overline{R X E R R B} / L D 2 B$. Set LEDEn2B $=0$ to turn the LED off. LEDEn2B is only active when RxErrEnB $=0$.
6	RxErrEnB	Channel B $\overline{R X E R R B} / L D 2 B$ Pin Function Select Set RxErrEnB = 1 to enable the receiver-error (RxErrorB) interrupt functionality on the $\overline{R X E R R B} / L D 2 B$ pin. In this mode, $\overline{\operatorname{RXERRB} / L D 2 B}$ asserts when the RxErrorB bit is set. The $\overline{R X E R R B} / L D 2 B$ pin functionality is not affected by the RxErrIntEnB interrupt mask. Set RxErrEnB $=0$ to enable the LED driver function on the ERRB/LD2B output.
5	LEDEn1B	Channel B LD1B LED Driver Control Set LEDEn1B = 1 to turn on a LED connected to $\overline{\text { RXRDYB/LD1B. Set }}$ LEDEn1B $=0$ to turn the LED off. LEDEn1B is only active when RxRdyEnB $=0$.
4	RxRdyEnB	Channel B $\overline{R X R D Y B / L D 1 B ~ P i n ~ F u n c t i o n ~ S e l e c t ~}$ Set RxRdyEnB = 1 to enable the receiver-error (RxErrorB) interrupt functionality on the $\overline{R X R D Y B} / L D 1 B$ pin. In this mode, $\overline{\text { RXRDYB/LD1B }}$ asserts when the RcDaRdyB bit is set. The $\overline{R X R D Y B} / L D 1 B$ pin functionality is not affected by the RxDaRdyIntEnB interrupt mask. Set RxRdyEnB $=0$ to enable the LED driver function on the RXRDYB/LD1B pin.
3	LEDEn2A	Channel A LD2A LED Driver Control Set LEDEn2A = 1 to turn on a LED connected to $\overline{\text { RXERRA/ } / L D 2 A . ~ S e t ~}$ LEDEn2A $=0$ to turn the LED off. LEDEn2A is only active when RxErrEnA $=0$.

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

LEDCtrl Register [0x0E] (continued)

BIT	NAME	DESCRIPTION
2	RxErrEnA	Channel A $\overline{\text { RXERRA/LD2A Pin Function Select Bit }}$ Set RxErrEnA = 1 to enable the receiver-error ($\mathrm{RxError} A$) interrupt functionality on the $\overline{R X E R R A} / L D 2 A$ pin. In this mode, $\bar{R} X E R R A / L D 2 A$ asserts when the RxErrorA bit is set. The $\overline{R X E R R A} / L D 2 A$ pin functinoality is not affected by the RxErrIntEnA interrupt mask. Set RxErrEnA $=0$ to enable the LED driver functiona on $\overline{R X E R R A} / L D 2 A$.
1	LEDEn1A	Channel A LD1A LED Driver Control Bit Set LEDEn1A = 1 to turn on a LED connected to the $\overline{\text { RXRDYA/LD1A }}$ pin. Set LEDEn1A $=0$ to turn the LED off. LEDEn1A is only active when RxRdyEnA $=0$.
0	RxRdyEnA	Channel A $\overline{\text { RXRDYA/LD1A Pin Function Select Bit }}$ Set RxRdyEnA = 1 to enable the receiver-data-ready interrupt asserts when the RDataRdyA bit is set. The $\overline{\mathrm{RXRDYA}} / \mathrm{LD} 1 \mathrm{~A}$ pin is not affected by the RxDaRdyIntEnA interrupt mask. Set RxRdyEnA $=0$ to enable the LED driver function on $\overline{\text { RXRDYA/LD1A. }}$

Trigger Register [0x0F]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	-	-	-	-	Trigger3	Trigger2	Trigger1	Trigger0
READ/WRITE	-	-	-	-	W	W	W	W
POR STATE	0	0	0	0	0	0	0	0
RESET UPON READ	-	-	-	-	N	N	N	N

BIT	NAME	DESCRIPTION
$7: 4$	-	These bits are not used.
$3: 0$	Trigger[3:0]	SPI Trigger Start Transmission Bits When the SPI master writes a vlue into the trigger register that matches the assigned value in the TrigAssignA/TrigAssignB registers, the MAX14819 immediately starts the cycle timer for the matching channel(s) (if enabled), and starts sending the master message. Note that writing to the trigger register is a global SPI write. Data written to the trigger register is not filtered by the SPI address and is written into the trigger reigster of each MAX14819 device connected to the common SPI bus.

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

CQCfgA Register [0x10]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	IEC3ThA	SourceSinkA	SinkSelA1	SinkSelA0	NPNA	PushPulA	DrvDisA	CQFilterEnA
READ/WRITE	R/W							
POR STATE	0	0	0	0	0	0	1	0
RESET UPON READ	N	N	N	N	N	N	N	N

BIT	NAME	DESCRIPTION
7	IEC3ThA	Channel A IEC61131-2 Type2/3 Threshold Select Set IEC3ThA = 0 for IO-Link operation and to select IEC61131-2 type 1 thresholds in SIO digital input mode. Set IEC3ThA = 1 to enable type $2 / 3$ thresholds on receiver CQA, if desired for SIO digital input operation.
6	SourceSinkA	Channel A CQ Current Sink or Source Select Set SourceSinkA = 1 to enable the internal current source on CQA. Set SourceSinkA = 0 to enable the internal current sink on CQA. Select the current level with the SinkSelA[1:0] bits.
5:4	SinkSelA[1:0]	Channel A CQ Sink/Source Current Level Select Set the SinkSelA[1:0] bits to enable/disable and select the current level of the internal current sink or source on CQA: 00: Current sink/source OFF 01: 5 mA 10: 2 mA 11: $150 \mu \mathrm{~A}$
3	NPNA	Channel A CQ Driver NPN/PNP Mode Select Set NPNA = 1 to configure the CQA driver in NPN mode. Set NPNA $=0$ to configure the CQA driver in PNP mode. NPNA is ignored if PushPulA $=1$.
2	PushPulA	Channel A CQ Driver Push-Pull Mode Select Set PushPulA = 1 to configure the CQA driver in push-pull mode required for IO-Link operation. Set PushPulA $=0$ for open-drain operation (NPN or PNP) on the CQA driver.
1	DrvDisA	Channel A CQ Driver Disable Set DrvDisA = 1 to disable the CQA driver. CQA is high impedance when disabled. Set DrvDisA = 0 to enable the CQA driver.
0	CQFilterEnA	Channel A CQ Glitch Filter Enable Set CQFilterEnA = 1 to enable the glitch filter on the CQA receiver. This is useful for burst filtering. Transients longer than $1.3 \mu \mathrm{~s}$ (typ) are ignored when the glitch filter is enabled.

Dual IO-Link Master Transceiver with Integrated

 Framers and L+ Supply Controllers
CQCfgB Register [0x11]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	IEC3ThB	SourceSinkB	SinkSeIB1	SinkSeIB0	NPNB	PushPulB	DrvDisB	CQFilterEnB
READ/WRITE	R / W	R/W	R / W	R/W				
POR STATE	0	0	0	0	0	0	1	0
RESET UPON READ	N	N	N	N	N	N	N	N

BIT	NAME	DESCRIPTION
7	IEC3ThB	Channel B IEC61131-2 Type2/3 Threshold Select Set IEC3ThB = 0 for IO-Link operation and to select IEC61131-2 type 1 thresholds in SIO digital input mode. Set IEC3ThB = 1 to enable type 2/3 thresholds on receiver CQB, if desired for SIO digital input operation.
6	SourceSinkB	Channel B CQ Current Sink or Source Select Set SourceSinkB = 1 to enable the internal current source on CQB. Set SourceSinkB $=0$ to enable the internal current sink on CQB. Select the current level with the SinkSelB[1:0] bits.
5:4	SinkSelB[1:0]	Channel B CQ Sink/Source Current Level Select Set the SinkSelB[1:0] bits to enable/disable and select the current level of the internal current sink or source on CQB: 00: Current sink/source OFF 01: 5mA 10: 2 mA 11: $150 \mu \mathrm{~A}$
3	NPNB	Channel B CQ Driver NPN/PNP Mode Select Set NPNB $=1$ to configure the CQB driver in NPN mode. Set NPNB $=0$ to configure the CQB driver in PNP mode. NPNB is ignored if PushPulB $=1$.
2	PushPulB	Channel B CQ Driver Push-Pull Mode Select Set PushPulB = 1 to configure the CQB driver in push-pull mode required for IO-Link operation. Set PushPulB $=0$ for open-drain operation (NPN or PNP) on the CQB driver.
1	DrvDisB	Channel B CQ Driver Disable Set DrvrDisB = 1 to disable the CQB driver. CQB is high impedance when disabled. Set DrvrDisB $=0$ to enable the CQB driver.
0	CQFilterEnB	Channel B CQ Glitch Filter Enable Set CQFilterEnB = 1 to enable the glitch filter on the CQB receiver. This is useful for burst filtering. Transients longer than $1.3 \mu \mathrm{~s}$ (typ) are ignored when the glitch filter is enabled.

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

CycITmrA Register [0x12]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	TCycIBsA1	TCycIBsA0	TCycIMA5	TCycIMA4	TCycIMA3	TCycIMA2	TCycIMA1	TCycIMA0
READ/WRITE	R/W							
POR STATE	0	0	0	0	0	0	0	0
RESET UPON READ	N	N	N	N	N	N	N	N

BIT	NAME	DESCRIPTION
$7: 6$	TCycIBsA[1:0]	Channel A Cycle Time-Base Select Set the TCycIBsA[1:0] bits to select the cycle time base for channel A IO-Link communication. The cycle timer is enabled by setting the CycITmrEnA bit in the CQCntrlA register. See Table 2.
$5: 0$	TCycIMA[5:0]	Channel A Cycle Time Multipler Set the TCycIMA bits to select the cycle time multiplier for channel A communication. ee Table 2.

Table 2. Cycle Time-Base Selection

TCycIBs_[1:0]	TIME BASE	CALCULATION	CYCLE TIME
00	0.1 ms	TCycIMA \times Time Base	0.4 ms to 6.3 ms
01	0.4 ms	$6.4 \mathrm{~ms}+$ TCycIMA \times Time Base	6.4 ms to 31.6 ms
10	1.6 ms	$32 \mathrm{~ms}+$ TCycIMA \times Time Base	32 ms to 132.8 ms
11	N/A	N/A	N/A

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

CycITmrB Register [0x13]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	TCycIBsB1	TCycIBsB0	TCycIMB5	TCycIMB4	TCycIMB3	TCycIMB2	TCycIMB1	TCycIMB0
READ/WRITE	R/W							
POR STATE	0	0	0	0	0	0	0	0
RESET UPON READ	N	N	N	N	N	N	N	N

BIT	NAME	DESCRIPTION
$7: 6$	TCycIBsB[1:0]	Channel B Cycle Time-Base Select Set the TCycIBsB[1:0] bits to select the cycle time base for channel B communication. The cycle timer is enabled by setting the CycITmrEnB bit in the CQCntrIB register. See Table 2.
$5: 0$	TCycIMB[5:0]	Channel B Cycle Time Multipler Set the TCycIMB bits to select the cycle time multiplier for channel B com- munication. See Table 2.

DeviceDlyA Register [0x14]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	DelayErrA	BDelayA1	BDelayA0	DDelayA3	DDelayA2	DDelayA1	DDelayA0	RspnsTmrEnA
READ/WRITE	R	R/W						
POR STATE	0	0	0	0	0	0	0	0
RESET UPON READ	Y	N	N	N	N	N	N	N

BIT	NAME	DESCRIPTION
7	DelayErrA	Channel A Delay Error This bit is set when the device message is not received within the programmed delay time. DelayErrA triggers a RxErrorA interrupt when set. This bit is cleared when the DevDlyA register is read.
$6: 5$	BDelayA[1:0]	Channel A Additional Byte Delay Set the BDelayA[1:0] bits to allow additional time between the device UART bytes, on top of the worst case delay defined by the IO-Link standard. The maximum additional delay is 3 bit intervals.
$4: 1$	DDelayA[3:0]	Channel A Additional Device Message Delay Set the DDelayA[3:0] bits to allow additional time to the expected device message response delay, on top of the worst case delay defined in the IO-Link standard of 10 bits. The maximum additional delay is 15 bit inter- vals. Set DDelayA = 1 for IO-Link compliance.
0	RspnsTmrEnA	Channel A Response Timer Enable Set RspnsTmrEnA = 1 to enable monitoring of the device message delay from the last stop bit of the message transmitted by the master. If the delay is longer than the expected delay, an RxErrorA interrupt is generated. DelayErrA is set if the IO-Link device takes a longer than usual response time or interpacket delay. Set RspnsTmrEnA = to disable this device message delay monitoring. When RspnsTmrEnA = 0, DelayErrA is always 0.

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

DeviceDlyB Register [0x15]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	DelayErrB	BDelayB1	BDelayB0	DDelayB3	DDelayB2	DDelayB1	DDelayB0	RspnsTmrEnB
READ/WRITE	R	R / W						
POR STATE	0	0	0	0	0	0	0	0
RESET UPON READ	Y	N	N	N	N	N	N	N

BIT	NAME	DESCRIPTION
7	DelayErrB	Channel B Delay Error This bit is set when the device message is not received within the programmed delay time. DelayErrB triggers a RxErrorB interrupt when set. This bit is cleared when the DevDlyB register is read.
6:5	BDelay B [1:0]	Channel B Additional Byte Delay Set the B Delay $B[1: 0]$ bits to allow additional time b etween the device UART bytes, on top of the worst case delay defined by the IO-Link standard. The maximum additional delay is 3 bit intervals.
$4: 1$	DDelayB[3:0]	Channel B Additional Device Message Delay Set the DDelayB[3:0] bits to allow additional time to the expected device message response delay, on top of the worst case delay defined in the IO-Link standard of 10 bits. The maximum additional delay is 15 bit intervals. Set DDelayB = 1 for lo-Link compliance.
0	RspnsTmrEnB	Channel B Response Timer Enable Set RspnsTmrEnB = 1 to enable monitoring of the device message delay from the last stop bit of the message transmitted by the master. If the delay is longer than the expected delay, an RxErrorB interrupt is generated. DelayErrB is set if the IO-Link device takes a longer than usual response time or interpacket delay. Set RspnsTmrEnB = 0 to disable this device message delay monitoring. When RspnsTmrEnB $=0$, DelayErrA is always 0 .

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

TrigAssgnA Register [0x16]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	TrigA3	TrigA2	TrigA1	TrigA0	-	-	-	TrigEnA
READ/WRITE	R/W	R/W	R/W	R/W	R	R	R	R/W
POR STATE	0	0	0	0	0	0	0	0
RESET UPON READ	N	N	N	N	-	-	-	N

BIT	NAME	DESCRIPTION
$7: 4$	TrigA[3:0]	Channel A Transmission Trigger Set the TrigA[3:0] bits to assign one of 16 possible trigger values to the CQA transmitter. When the same trigger value is subsequently written by the SPI master to the trigger register, the master message is immediately sent from TxFIFOA and the cycle timer is started (if previously enabled). Trigger 0000 is a global trigger value and is associated with both CQA and CQB by default, this cannot be changed.
$6: 1$	TrigEnA	These bits are not used
0	Channel A Tranmission Triggering Enable Set TrigEnA $=1$ to enable SPI based master message triggering/ synchronization on Channel A. Set TrigEnA $=0$ to disable transmitter triggering. When TrigEnA $=0$, the bits in TrigA[3:0] are ignored.	

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

TrigAssgnB Register [0x17]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	TrigB3	TrigB2	TrigB1	TrigB0	-	-	-	TrigEnB
READ/WRITE	R / W	R / W	R / W	R / W	R	R	R	R / W
POR STATE	0	0	0	0	0	0	0	0
RESET UPON READ	N	N	N	N	-	-	-	N

BIT	NAME	DESCRIPTION
$7: 4$	TrigB[3:0]	Channel B Transmission Trigger Set the TrigB[3:0] bits to assign one of 16 possible trigger values to the CQB transmitter. When the same trigger value is subsequently written by the SPI master to the trigger register, the master message is immediately sent from TxFIFOB and the cycle timer is started (if previously enabled). Trigger 0000 is a global trigger value and is associated with both CQA and CQB by default, this cannot be changed.
$6: 1$	TrigEnB	These bits are not used.
0	Channel B Tranmission Triggering Enable Set TrigEB $=1$ to enable SPI based master message triggering/ synchronization on Channel B. Set TrigEnB $=0$ to disable transmitter triggering. When TrigEnB $=0$, the bits in TrigB[3:0] are ignored.	

L+CnfgA Register [0x18]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	L+RTA1	L+RTA0	L+DynBLA	L+BLA1	L+BLA0	L+CL2xA	L+CLimDisA	L+EnA
READ/WRITE	R/W							
POR STATE	0	0	0	0	0	0	0	0
RESET UPON READ	N	N	N	N	N	N	N	N

BIT	NAME	DESCRIPTION
7:6	L+RTA[1:0]	Channel A L+ Sensor Supply Current-Limit Autoretry Period Set the L+RTA[1:0] bits to select the current-limit autoretry period: 00: Latchoff, no autoretry 01: 400 ms 10: 4s 11: 12s Latchoff is used for controller-managed timing.

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

L+CnfgA Register [0x18] (continued)

BIT	NAME	DESCRIPTION
5	L+DynBLA	Channel A L+ Dynamic Blanking Time Enable/Disable Set $L+$ DynBLA $=1$ to enable the blanking time reduction when the $L+A$ voltage is below 18 V . This option allows the circuit to reduce the energy dissipated in the external PMOS2 in case of a shorted output, keeping the current constant.
4:3	L+BLA[1:0]	Channel A L+ Sensor Supply Current Blanking Time Set the L+BLA[1:0] bits to set the current-limit blanking time for the L+A sensor supply: 00: 5.5 ms 01: 16.5 ms 10: 55 ms 11: 165 ms Longer blanking times allow for charging of larger capacitive loads. When selecting the blanking time, consider the power ratings of the external PMOS2 transistors used in the L+A supply line. The VDS on these transistors linearly reduces during capacitive load charge-up. The time to charge a capacitive load is proportional to the maximum current during blanking time.
2	L+CL2xA	Channel A L+Double Current Limit Enable/Disable Set $L+C L 2 x A=1$ to enable twice the current set by the current-limit resistor during the blanking time when the $L+A$ voltage is higher than 18 V . Set $L+C L 2 x A=0$ to operate the $L+A$ sensor supply with the normal current-limit threshold.
1	L+CLimDisA	Channel A L+Supply Current Limit Enable/Disable Set $L+$ CLimDisA = 1 to disable current limiting on the $L+A$ sensor supply. This disables the internal current-sense amplifier. Set $L+C L i m D i s A=0$ to enable current limiting on $L+A$. The current limit is set by the sense resistor connected between the Channel A pMOSFETs.
0	L+EnA	Channel A L+Supply Enable Set the $L+E n A=1$ to enable the $L+A$ sensor supply. This turns on the PMOS2 G2A gate driver. When L+EnA is set to 0 , the current-limit timers (autoretry, latchoff, and blanking timers) are reset. Set L+EnA $=0$ long enough to allow the external PMOS to cool, if needed. Short pulses on L+EnA (less than $200 \mu \mathrm{~s}$) are ignored.

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

L+CnfgB Register [0x19]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	L+RTB1	L+RTB0	L+DynBLB	L+BLB1	L+BLB0	L+CL2xB	L+CLimDisB	L+EnB
READ/WRITE	R/W							
POR STATE	0	0	0	0	0	0	0	0
RESET UPON READ	N	N	N	N	N	N	N	N

BIT	NAME	DESCRIPTION
7:6	L+RTB[1:0]	Channel B L+ Sensor Supply Current-Limit Autoretry Period Set the L+RTB[1:0] bits to select the current-limit autoretry period: 00: Latchoff, no autoretry 01: 400 ms 10: 4s 11: 12s Latchoff is used for controller-managed timing.
5	L+DynBLB	Channel B L+ Dynamic Blanking Time Enable/Disable Set $L+$ DynBLB $=1$ to enable the blanking time reduction when the $L+B$ voltage is below 18 V . This option allows the circuit to reduce the engery dissipated in the external PMOS2 in case of a shorted output, keeping the current constant.
4:3	L+BLB[1:0]	Channel B L+ Sensor Supply Current Blanking Time Set the L+BLB[1:0] bits to set the current-limit blanking time for the L+B sensor supply: $\begin{aligned} & 00: 5.5 \mathrm{~ms} \\ & 01: 16.5 \mathrm{~ms} \\ & 10: 55 \mathrm{~ms} \\ & 11: 165 \mathrm{~ms} \end{aligned}$ Longer blanking times allow for charging of larger capacitive loads. When selecting the blanking time, consider the power ratings of the external PMOS2 transistors used in the L+B supply line. The VDS on these transistors linearly reduces during capacitive load charge-up. The time to charge a capacitive load is proportional to the maximum current during blanking time.

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

L+CnfgB Register [0x19] (continued)

BIT	NAME	DESCRIPTION
2	L+CL2xB	Channel B L+ Double Current-Limit Enable/Disable Set L+CL2xB = 1 to enable twice the current set by the current-limit resistor during the blanking time when the $\mathrm{L}+\mathrm{B}$ voltage is higher than 18 V . Set $\mathrm{L}+\mathrm{CL} 2 \mathrm{xB}=0$ to operate the L+B sensor supply with the normal current-limit threshold.
1	L+CLimDisB	Channel B L+ Supply Current-Limit Enable/Disable Set L+CLimDisB = 1 to disable current limiting on the L+B sensor supply. This disables the internal current-sense amplifier. Set L+CLimDisB $=0$ to enabled current limiting on L+B. The current limit is set by the sense resistor connected between the Channel B pMOSFETs.
0	L+EnB	Channel B L+ Supply Enable Set the $L+E n B=1$ to enable the $L+B$ sensor supply. This turns on the G2B gate driver. When L+EnB is set to 0 , the current-limit timers (autoretry, latchoff, and blanking timers) are reset. Set $\mathrm{L}+\mathrm{EnB}=0$ long enough to allow the external PMOS to cool, if needed. Short pulses on L+EnB (less than 200μ s) are ignored.

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

IOStCfgA Register [0x1A]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	DiLevelA	CQLevelA	TxEnA	TxA	DiFilterEnA	DiEC3ThA	DiCSourceA	DiCsinkA
READ/WRITE	R	R	R / W					
POR STATE	0	0	0	0	0	0	0	0
RESET UPON READ	N	N	N	N	N	N	N	N

BIT	NAME	DESCRIPTION
7	DiLevelA	Channel A DIA Logic Level This bit is set when DIA $=$ high. This bit is 0 when DIA $=$ low.
6	CQLevelA	Channel A CQA Logic Level This bit is set when CQA = high. This bit is 0 when CQA = low.
5	TxEnA	Channel A CQ Transmitter Enable Input When TXTXENDis $=1$, this bit has the same functionality as the TXENA input. When TXTXENDis $=0$, this bit is ignored.
4	TxA	Channel A CQ Transmitter Input When TXTXENDis $=1$, this bit has the same functionality as the TXA input. When TXTXENDis $=0$, this bit is ignored.
3	DiFilterEnA	Channel A DI Glitch Filter Enable/Disable Set DiFilterEnA $=1$ to enable the glitch filter on DIA. Set DiFilterEnA $=0$ to disable the glitch filter. Transients longer than $1.3 \mu \mathrm{~s}$ (typ) are ignored when the glitch filter is enabled.
2	DiEC3ThA	Channel A IEC61131-2 Type2/3 Threshold Select Set DiEC3ThA = 1 to enable type $2 / 3$ thresholds on the DIA receiver. Set DiEC3ThA $=0$ to enable type 1 threholds on the DIA receiver.
1	DiCSourceA	Channel A DI Current Source Enable/Disable Set DiCSourceA $=1$ to enable the 2 mA (typ) current source on DIA. Set DiCSourceA $=0$ to disable the current source.
0	DiCSinkA	Channel A DI Current Sink EnableDisable Set DiCSinkA = 1 to enable the 2 mA (typ) current sink on DIA. Set DiCSinkA $=0$ to disable to current sink.

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

IOStCfgB Register [0x1B]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	DiLevelB	CQLevelB	TxEnB	TxB	DiFilterEnA	DiEC3ThA	DiCSourceA	DiCsinkB
READ/WRITE	R	R	R / W					
POR STATE	0	0	0	0	0	0	0	0
RESET UPON READ	N	N	N	N	N	N	N	N

BIT	NAME	DESCRIPTION
7	DiLevelB	Channel A DIA Logic Level This bit is set when DIB $=$ high. This bit is 0 when DIB $=$ low.
6	CQLevelB	Channel A CQA Logic Level This bit is set when CQB $=$ high. This bit is 0 when $C Q B=$ low.
5	TxEnB	Channel A CQ Transmitter Enable Input When TXTXENDis $=1$, this bit has the same functionality as the TXENB input. When TXTXENDis $=0$, this bit is ignored.
4	TxB	Channel B CQ Transmitter Input When TXTXENDis $=1$, this bit has the same functionality as the TXB input. When TXTXENDis $=0$, this bit is ignored.
3	DiFilterEnB	Channel B DI Glitch Filter Enable/Disable Set DiFilterEnB $=1$ to enable the glitch filter on DIB. Set DiFilterEnB $=0$ to disable the glitch filter. Transients longer than $1.3 \mu \mathrm{~s}$ (typ) are ignored when the glitch filter is enabled.
2	DiEC3ThB	Channel B IEC61131-2 Type2/3 Threshold Select Set DiEC3ThB = 1 to enable type $2 / 3$ thresholds on the DIB receiver. Set DiEC3ThB $=0$ to enable type 1 thresholds on the DIB receiver.
1	DiCSourceB	Channel B DI Current Source Enable/Disable Set DiCSourceB = 1 to enable the 2 mA (typ) current source on DIB. Set DiCSourceB $=0$ to disable the current source.
0	DiCSinkB	Channel B DI Current Sink EnableDisable Set DiCSinkB = 1 to enable the 2 mA (typ) current sink on DIB. Set DiCSinkB $=0$ to disable to current sink.

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

DrvrCurrLim Register [0x1C]

Bit	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bit Name	CL1	CL0	CLDis	CLBL1	CLBL0	TAr1	TAr0	ArEn
Read/Write	R / W							
POR State	0	0	0	0	0	0	0	0
Reset Upon Read	N	N	N	N	N	N	N	N

BIT	NAME	DESCRIPTION
7:6	CL[1:0]	CQA and CQB Driver Current-Limit Selection Set the $\mathrm{CL}[1: 0]$ bits to set the current limit for the CQA and CQB drivers when CLDis $=0$: 00: 100mA 01: 200mA 10: 300 mA 11: 500 mA
5	CLDis	CQA and CQB Driver Current Enable/Disable Set CLDis $=1$ to disable current limiting on the CQA and CQB drivers. Set CLDis $=0$ to enable current limiting on the CQA and CQB driver. When CLDis $=0$, the CQA and CQB driver current limit is set by the CL[1:0] bits.
4:3	CLBL[1:0]	Blanking Time Selection Set the CLBL[1:0] bits to set the blanking time on the CQA and CQB drivers before a fault is indicated: $\begin{aligned} & 00: 128 \mu \mathrm{~s} \\ & 01: 500 \mu \mathrm{~s} \\ & 10: 1 \mathrm{~ms} \\ & 11: 5 \mathrm{~ms} \end{aligned}$ The blanking time affects the maximum capacitive and incandescent lamp load that can be driven without triggering the fault signal. In order to drive very large capacitive or lamp loads, increase the blanking time and/or disable the autoretry timeout.
2:1	TAr[1:0]	Autoretry Timeout Selection When a fault is detected on a driver output, the driver is disabled for the autoretry timeout. The driver is reenabled following the autoretry timeout. Set the $\operatorname{TAr}[1: 0]$ bits to select the autoretry timeout: $\begin{aligned} & 00: 50 \mathrm{~ms} \\ & 01: 100 \mathrm{~ms} \\ & \text { 10: } 200 \mathrm{~ms} \\ & \text { 11: } 500 \mathrm{~ms} \end{aligned}$
0	ArEn	Autoretry Enable/Disable Set $\mathrm{ArEn}=1$ to enable autoretry functionality when a fault condition occurs on CQA or CQB. When a fault is detected on a driver, the driver is disabled for the autoretry fixed off time (set in the $\operatorname{TAr}[1: 0]$ bits). The driver is reenabled and, following the blanking time, is rechecked. If the fault persists, the fault bit is left set and the driver is disabled again. When the fault is removed, the status bit is reset and the driver returns to normal operation.

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

Clock Register [0x1D]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	vccWarnEn	TXTXENDis	-	CIkOEn	CIkDiv1	CIkDiv0	ExtCIkEn	XtalEn
READ/WRITE	R / W	R / W	R	R / W				
POR STATE	0	0	0	0	0	0	0	0
RESET UPON READ	N	N	N	N	N	N	N	N

BIT	NAME	DESCRIPTION
7	VCCWarnEn	V_{CC} Warning Interrupt Enable Set VCCWarnEn = 1 to enable the StatusInt interrupt when V_{CC} drops below the 18 V (typ) V_{CC} warning threshold. When VCCWarnEn $=0$, the VCCWarn bit in the Status register is active, but does not generate a StatErrInt interrupt when the V_{CC} voltage drops below 18 V (typ).
6	TXTXENDis	CQ_Pin Control Enable/Disable Set TXTXENDis $=1$ to disable the external TX_ and TXEN_input pins and to enable control of the CQ_ outputs through the Tx_ and TxEn_ bits in the IOStCfgA and IOStCfgB registers.
5	-	This bit is not used.
4	ClkOEn	Clock Output Pin (CLKO) Enable/Disable Set CIkOEn $=1$ to enable the 3.686 MHz output clock on the CLKO pin.
3:2	ClkDiv[1:0]	External Crystal Frequency Divider Set the ClkDiv[1:0] bits to select the frequency divider quotient related to the external crystal frequency: $00: 14.745 \mathrm{MHz}$ 01: 7.373MHz $10 \text { and 11: } 3.686 \mathrm{MHz}$
1	ExtClkEn	External Clock Input Enable/Disable Set ExtCIkEn = 1 to enable clocking from the CLKI input. XtalEn must be set to 0 when ExtClkEn is 1 . Set ExtCIkEn = 0 and XtalEn $=0$ when the internal framer and neither the external clock, nor external crystal, are not used.
0	XtalEn	Crystal Oscillator Enable/Disable Set XtalEn = 1 to enable the internal crystal oscillator. ExtCIkEn must be set to 0 when XtalEn is 1 . Set XtalEn $=0$ and ExtClkEn $=0$ when the internal framer and neither the external clock, nor external crystal, are not used.

Dual IO-Link Master Transceiver with Integrated Framers and L+ Supply Controllers

Status Register [0x1E]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	ThShdnCOR	ThWarnCOR	VCCUVCOR	VCCWarnCOR	ThShdn	ThWarn	VCCUV	VCCWarn
READ/WRITE	R	R	R	R	R	R	R	R
POR STATE	0	0	0	0	0	0	0	0
RESET UPON READ	Y	Y	Y	Y	N	N	N	N

BIT	NAME	DESCRIPTION
7	ThShdnCOR	Clear-On-Read Thermal Shutdown Clear-on-read version of the ThShdn bit. This bit is set only when the ThShdn bit transitions from 0 to 1. A StatusInt interrupt is generated when this bit is set. This bit is cleared when Status register is read.
6	ThWarnCOR	Clear-On-Read Die Temperature Warning Clear-on-read version of the ThWarn bit. This bit is set only when the ThWarn bit transitions from 0 to 1. A StatusInt interrupt is generated when this bit is set. This bit is cleared when the Status register is read.
5	VCCUVCOR	Clear-On-Read V ${ }_{\text {Cc }}$ Undervoltage Warning Clear-on-read version of the VCCUV bit. This bit is set only when the VCCUV bit transitions from 0 to 1. A StatusInt interrupt is generated when this bit is set. This bit is cleared when the Status register is read.
4	VCCWarnCOR	Clear-On-Read $V_{\text {CC }}$ Supply Voltage Warning Clear-on-read version of the VCCWarn bit. This bit is set only when the VCCWarn bit transitions from 0 to 1 . A StatusInt interrupt is generated when this bit is set, if enabled by setting the VccWarnEn bit. This bit is cleared when the Status register is read.
3	ThShdn	Thermal Shutdown This bit is set when the die temperature reaches $150^{\circ} \mathrm{C}$ and the die enters thermal shutdown. This bit is cleared when the die temperature falls and the part is no longer in thermal shutdown.
2	ThWarn	Die Temperature Warning This bit is set when the die junction temperature exceeds the $135^{\circ} \mathrm{C}$ warning threshold. This bit is cleard when the die temperature falls below $120^{\circ} \mathrm{C}$.
1	VCCUV	$\mathrm{V}_{\text {CC }}$ Undervoltage This bit is set when the V_{CC} voltage falls below 9 V (typ). It is cleared when the V_{CC} voltage rises above 9 V (typ).
0	VCCWarn	V_{CC} Supply Voltage Warning This bit is set when the V_{CC} voltage falls below 18 V (max). It is cleared when the V_{CC} voltage rises above 18 V (max).

RevID Register [0x1F]

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BIT NAME	-	-	-	-	$\mathrm{ID3}$	ID2	ID1	ID0
READ/WRITE	R	R	R	R	R	R	R	R
POR STATE	0	0	0	0	1	0	0	0
RESET UPON READ	N	N	N	N	N	N	N	N

BIT	NAME	DESCRIPTION
$[7: 4]$	-	These bits are not used.
$[3: 0]$	ID[3:0]	CHIP ID Bits These bits are ready only. They reflect the current revision of the MAX14819. The RevID register is meant for use during system/chip initialization and should not be used during IO-Link communication, since a byte may be lost in the RxFIFOA.

The MAX14819 continues to operate normally unless the die temperature reaches the $+160^{\circ} \mathrm{C}$ (typ) thermalshutdown threshold, at which time the device enters thermal shutdown.

Applications Information

The Microcontroller Interface

Logic-Level I/Os

The logic levels of the microcontroller interface I/Os are defined by V_{L}. Apply a supply voltage between 1.62 V and 5.5 V to V_{L} for normal operation. Logic outputs are supplied by V_{L}.

Efficient Microcontroller Interface Management

When the MAX14819 receives the device response message completely and error-free, an SPI RxDataRdy_ interrupt is generated and $\overline{\mathrm{RQQ}}$ asserts. If enabled, the hardware interrupt ($\left.\overline{\mathrm{RXRDY}} / \mathrm{LD} 1 _\right)$also asserts. When the SPI master receives the interrupt and then reads out the device message from the RxFIFO_, the RxDataRdy_bit and RXRDY_/LD1_pin interrupts are then automatically cleared.
If the device message is received by the MAX14819 with errors or not in time, then an RxError_ interrupt occurs ($\overline{\mathrm{RQ}}$ asserts) and optionally, the $\overline{\mathrm{RXERR}} / \mathrm{LD} 2$ _ hardware interrupt also asserts if enabled. The MAX14819 can be configured to delete the device message under these circumstances and resend the master message with the SPI controller managing the process. The SPI controller is required only when the device message is ready and the MAX14819 is ready for the next master message (Figure 19).

Figure 19. IO-Link Cycle Timing

Quartz Crystal Selection

The crystal should have a frequency of either 3.6864 MHz , 7.3728 MHz , or 14.7456 MHz . Select a crystal with an equivalent series resistance (ESR), including stray resistances, less than 75Ω (max).
The crystal oscillator drives the crystal with a power limited to $70 \mu \mathrm{~W}$ (max) power dissipation in the crystal based on a 14.7456 MHz frequency, 8pF (max) shunt capacitance, and 75Ω equivalent series resistance.
The input capacitance of the MAX14819 XIN and XOUT pins is 10 pF , so no external capacitors are needed if the crystal's load capacitance is in this range. If the selected crystal requires higher load capacitance, connect capacitors at XIN and XOUT to GND to make up for the difference.

Selecting the pMOS Transistors for the L+A/L+B Supplies

Select PMOS1_ and PMOS2_ transistors whose drain-to-source current (IDS) carrying capability is higher than the maximum load current. The maximum load current for an application is set by the selected current limit and the L+CL2x_bits.
It is important to select pMOS FETs with low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ to minimize the $I^{2} R$ heat generation in the module. When turned on, the PMOS1_ and PMOS2_gate-to-source voltage $\left(\mathrm{V}_{\mathrm{GS}}\right)$ is driven to -12.5 V (typ). Use this bias condition for selecting the $R_{D S(O N)}$ of the pMOS.
The pMOS transistors need to support the minimum and maximum voltages expected at the V_{CC} and L^{+}terminals. Select the transistor such that the drain-to-source voltage (V_{DS}) of PMOS1_FET is able to support the most negative V_{CC} voltage, while the L^{+}supply maintains a positive voltage (e.g., 28 V) due to capacitance on the line. Similarly, ensure that the $V_{D S}$ of the PMOS2_FET is large enough to support the maximum $V_{C C}$ voltage while $L+$ _ is shorted to the most negative voltage.
When the L+ supply output is shorted to ground or a negative voltage, the PMOS2_ FET dissipates the maximum heat. The heat energy is determined by the currentlimit current, the on-to-off duty cycle (i.e., blanking time/ autoretry time), and the V_{DS} voltage. Select a PMOS2_ transistor with a low thermal impedance to efficiently conduct away the heat.

Because the PMOS1_ transistor is not a part of the current-limiting circuitry, it does not dissipate as much heat as PMOS2_ during a short-circuit event.
Ensure that the PMOS1_ and PMOS2_ FETs have gatesource threshold voltages less than $0.8 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{GS}}(\mathrm{th})\right.$ < -0.8 V).
Examples of suitable pMOS FETs (depending on desired current limits) are SH8J31, NTTFS5116PL, and Si7415DN.

Transient Protection

Inductive Loads

Both the CQ_ drivers and the L+_ supplies can drive and switch inductive loads. External TVS/zener-clamping diodes are required to clamp the kickback voltage and absorb energy when inductive loads are driven and fast turn-off is needed. The clamping voltage must be less than the Absolute Maximum voltage ratings of the CQA and CQB pins. In some cases, the EMC protection devices may be adequate for this purpose.

Surge, Burst, and ESD Protection

The CQ_, DI_, L+, and VCC pins need to be protected against electrostatic discharge (ESD), electrical fast transients (EFT), and possible surges. The Absolute Maximum Ratings for these pins is $\left(\mathrm{V}_{\mathrm{CC}}-70 \mathrm{~V}\right)$ to +65 V , providing significant headroom to allow the use of physically small protection diodes and higher protection voltages. For standard ESD and burst protection demanded by the IO-Link specification, small package TVS (like the uClamp3603T or the SPT01-335) can be used to protect the CQ_, DI, and L+_ lines. If higher level surge ratings need to be achieved, such as IEC 61000-4-5 $\pm 1 \mathrm{kV} / 42 \Omega$, SMAJ33A, or SMCJ48A, TVS protectors can be used on CQ_, DI_ and L+. 48V TVS diodes allow for high negative voltages, making these pins tolerant to negative short circuits and reverse polarity.
For $\pm 500 \mathrm{~V} / 2 \Omega$ IEC 61000-4-5 surge protection on the $V_{\text {CC }}$ input, Maxim recommends the SM30TY47AY and SM30TY33AY.

Using a Step-Down Regulator with the 5 V Regulator

To decrease power dissipation in the MAX14819, V_{5} can be powered by an external step-down regulator. Connect the external regulator's output to the V_{5} input and disable the internal 5 V regulator by connecting REGEN to ground (Figure 20).

THE MAX14819 IS A DUAL- CHANNEL MASTER TRANSCEIVER. ONLY ONE CHANNEL IS SHOWN HERE. OPERATED WITH INTERNAL FRAMER.

Figure 20. Using an External 5V Step-Down Regulator

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX14819ATM +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	48 TQFN-EP*
MAX14819ATM +T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	48 TQFN-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
T = Tape and reel.

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
48 TQFN-EP	T4877+4C	$\underline{21-0144}$	$\underline{90-0130}$

Revision History

| REVISION
 NUMBER | REVISION
 DATE | DESCRIPTION | PAGES
 CHANGED |
| :---: | :---: | :--- | :---: | :---: |
| 0 | $3 / 17$ | Initial release | - |
| | | | $1,2,8,23,26$, |
| 1 | $8 / 17$ | Updated/corrected figures and text | $28,39,40,45$, |
| | | | $46,52,53,62$, |
| 63,69 | | | |

