OP505, OP505W, OP506, OP506W OP535, OP705

Electronics

Features:

- T-1 package style
- · Variety of sensitivity ranges
- Choice of narrow or wide receiving angle
- Small package size ideal for space-limited applications
- 0.050" [1.27mm] or 0.100" [2.54mm] Lead spacing

Description:

Each OP505 and OP506 devices consist of an NPN silicon phototransistor, the OP535 device consist of an NPN silicon photodarlington transistor and the OP705 device consist of an NPN silicon phototransistor with a large value resistor integrated between the Base and Emitter for low light signal rejection. All of the devices are molded in a blue-tinted T-1 (3mm) epoxy package

The OP505, OP535 and OP70**5** devices have a narrow receiving angle that provides excellent on-axis coupling while the OP506 device has a wider receiving angle for those applications where a narrow receiving angle of the OP505, OP535 and OP705 is not required. The OP505W and OP506W device have the widest receiving angle and provides relatively even reception over a large area.

Devices are 100% production tested, using infrared light for close correlation with Optek's GaAs and GaAlAs emitters.

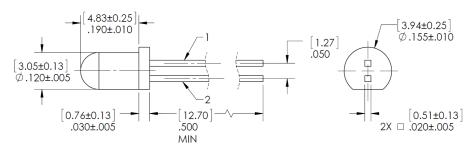
Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.

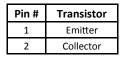
Please see your OPTEK representative for custom versions of these devices.

Applications:

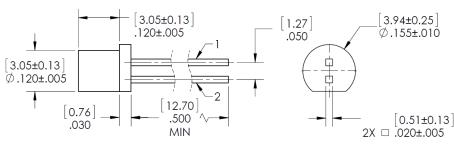
- Space-limited applications
- Interruptive applications to detect media which is semitransparent to infrared light

Ordering Information						
Part Number	Sensor	Viewing Angle	Lead Spacing	Lead Length		
OP505A				0.50" [12.7 mm]		
OP505B		20°				
OP505C		20	0.050" [1.27 mm]			
OP505D			[1.27 11111]			
OP505W	Transistor	90°				
OP506A						
OP506B		20°	0.100"			
OP506C			[2.54 mm]			
OP506W		90°				
OP535A	Darlington					
OP535B	Darlington	20°	0.050" [1.27 mm]			
OP705A	R _{BE} Transistor	20				




Issue B 08/2016 Page 1

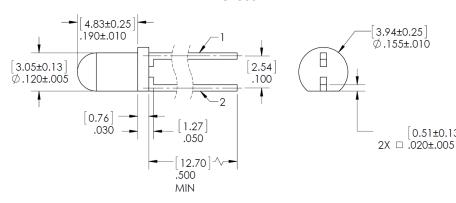
OP505, OP505W, OP506, OP506W OP535, OP705



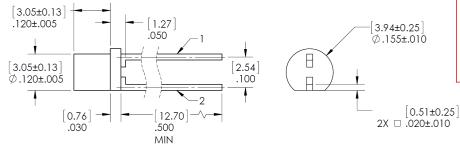
OP505, OP535, OP705

OP505W

OP705



OP535



[0.51±0.13]

OP506

OP506W

CONTAINS POLYSULFONE

Methanol and isopropanol alcohols are recommended cleaning agents. Housings are soluble in chlorinated hydrocarbons and keytones. Highly activated or water soluble fluxes may damage body. Testing reagents before use is recommended prior to use.

TOLERANCES ARE ± .010" [.25] UNLESS OTHERWISE STATED **DIMENSIONS ARE IN INCHES [MILLIMETERS]**

OP505, OP505W, OP506, OP506W OP535, OP705

Electrical Specifications

Absolute Maximum Ratings (T _A = 25° C unless otherwise noted)	
Storage & Operating Temperature Range	-40°C to +100° C
Collector-Emitter Voltage (OP505, OP506, OP505W, OP506W, OP705)	30 V
Collector-Emitter Voltage (OP535)	15 V
Emitter-Collector Voltage (OP505 and OP506 series only)	5.0 V
Lead Soldering Temperature (1/16 inch (1.6 mm) from case for 5 seconds with soldering iron)	260° C
Power Dissipation	100 mW ⁽²⁾
Emitter Reverse Current (OP705 series only)	10 mA
Collector DC Current (OP705 series only)	30 mA

Electrical Characteristics (T_A = 25° C unless otherwise noted) **OP505, OP506, OP505W, OP506W, OP705**

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS	
I _{C(ON)}	On-State Collector Current						
	OP505A, OP506A	4.30	-	-		_	
	OP505B, OP506B	2.15	-	5.95	mA	$V_{CE} = 5 \text{ V}, E_e = 0.50 \text{ mW/cm}^2, \text{ Note 3}$	
	OP505C, OP506C	1.10	-	3.00			
	OP505D	0.55	-	-			
	OP705A	3.95	-	12.00	mA	$V_{CE} = 5 \text{ V}, E_e = 0.50 \text{ mW/cm}^2, \text{ Note 3}$	
	OP505W, OP506W	0.10	-	-	mA	$V_{CE} = 5 \text{ V}, E_e = 0.75 \text{ mW/cm}^2, \text{ Note 3}$	
V _{CE(SAT)}	Collector-Emitter Saturation Voltage OP505, OP506, OP705	-	-	0.40	V	$I_C = 250 \mu A, E_E = 0.5 \text{ mW/cm}^2, \text{ Note 3}$	
	OP505W, OP506W	-	-	0.40	V	$I_C = 50 \mu A$, $E_E = 0.75 \text{ mW/cm}^2$, Note 3	
I _{CEO}	Collector-Dark Current	-	-	100	nA	V _{CE} = 10 V, E _E = 0	
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30	-	-	V	I _C = 100 μA, E _E = 0	
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage OP505, OP506	5	-		V	I _E = 100 μA, E _E = 0	
	OP705	0.4	-	-	V	I _E = 100 μA, E _E = 0	
ΔΙ _C /ΔΤ	Relative I _C Changes with Temperature	-	1.00	-	% / °C	$V_{CE} = 5 \text{ V, } E_E = 1.0 \text{ mW/cm}^2$	
E _{KP}	Knee Point Irradiance (OP705)	-	0.02	-	mW/cm ²	V _{CE} = 5 V, Note 4	

Notes:

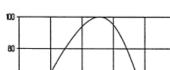
- (1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering. A maximum of 20 grams force may be applied to the leads when soldering.
- (2) Derate linearly 1.33 mW/° C above 25° C.
- (3) Light source is an unfiltered GaAs LED with a peak emission wavelength of 935 nm and a radiometric intensity level, which varies less than 10% over the entire lens surface of the phototransistor being tested.
- (4) The knee point irradiance is defined as the irradiance required to increase Ic(on) to 50 μ A.

Issue B 08/2016 Page 3

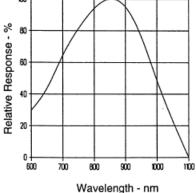
OP505, OP505W, OP506, OP506W OP535, OP705

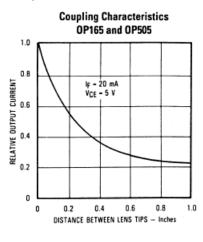
Electrical Specifications

Electrical Characteristics (T _A = 25° C unless otherwise noted) OP535						
SYMBOL	PARAMETER	MIN	ТҮР	МАХ	UNITS	TEST CONDITIONS
I _{C(ON)}	On-State Collector Current OP535A OP535B		-	32.0	mA	V _{CE} = 5 V, E _E = 0.13 mW/cm ² , Note 3
V _{CE(SAT)}	Collector-Emitter Saturation Voltage	-	-	1.10	V	$I_C = 400 \mu A, E_E = 0.13 \text{ mW/cm}^2$, Note 3
I _{CEO}	Collector-Dark Current	-	-	100	nA	V _{CE} = 10 V, E _E = 0
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	15.0	-	-	V	I _C = 1.0 mA, E _E = 0
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0	-	-	V	Ι _Ε = 100 μΑ, Ε _Ε = 0

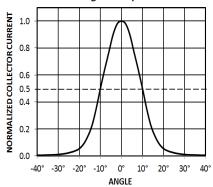

Issue B 08/2016 Page 4

OP505, OP505W, OP506, OP506W OP535, OP705

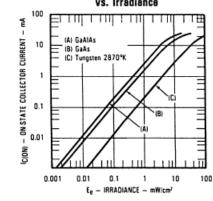


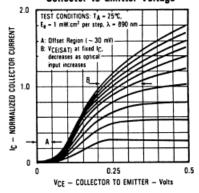

Performance

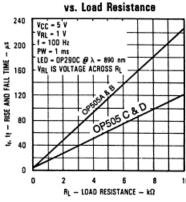
OP505A, OP505B, OP505C, OP505D

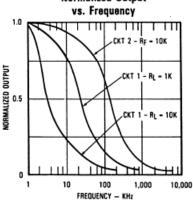


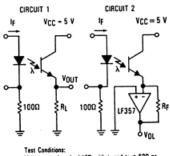
Typical Spectral Response




Normalized Collector Current vs. Angular Displacement


On-State Collector Current vs. Irradiance

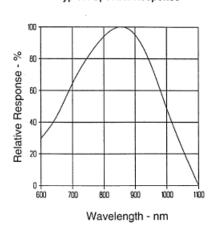

Normalized Collector Current vs. Collector to Emitter Voltage

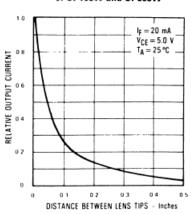

Rise and Fall Time

Normalized Output

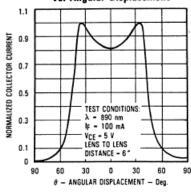
Switching Time **Test Circuit**

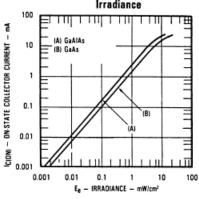
ght source is pulsed LED with t_f and $t_f \le 500$ ns. is adjusted for $V_{OUT} = 1$ Volt.

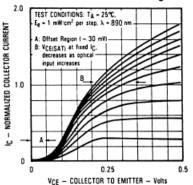

OP505, OP505W, OP506, OP506W OP535, OP705

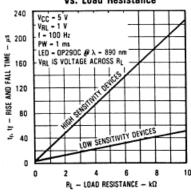

Performance

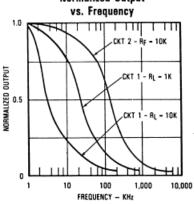
OP505W

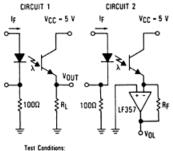

Typical Spectral Response


Coupling Characteristics of OP165W and OP505W


Normalized Collector Current vs. Angular Displacement


On-State Collector Current vs Irradiance

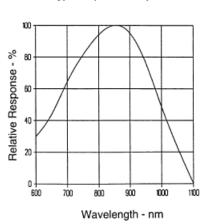

Normalized Collector Current vs. Collector to Emitter Voltage

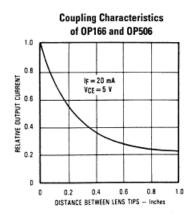

Rise and Fall Time vs. Load Resistance

Normalized Output

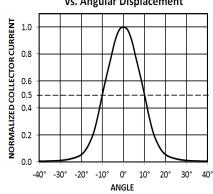
Switching Time **Test Circuit**

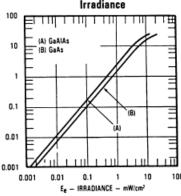
Light source is pulsed LED with t_r is adjusted for $V_{OUT} = 1$ Volt.

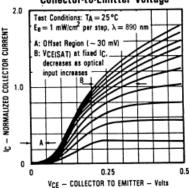

OP505, OP505W, OP506, OP506W OP535, OP705

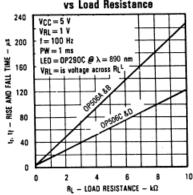


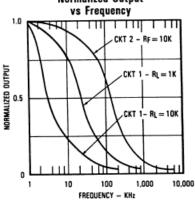
Performance

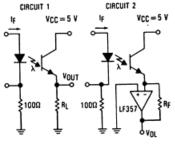

OP506A, OP506B, OP506C




Normalized Collector Current vs. Angular Displacement


On-State Collector Current vs Irradiance

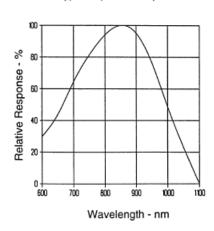

Normalized Collector Current vs Collector-to-Emitter Voltage

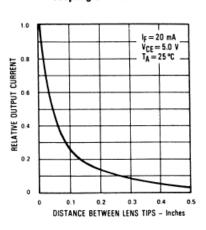

Rise and Fall Time vs Load Resistance

Normalized Output

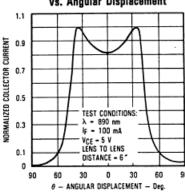
Switching Time Test Circuit

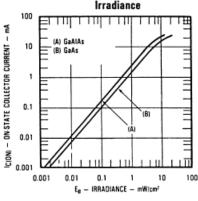
Test Conditions: Light source is pulsed LED with t_f and $t_f \leq 500$ ns. IF is adjusted for VQUT = 1 Volt.

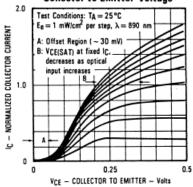

OP505, OP505W, OP506, OP506W OP535, OP705

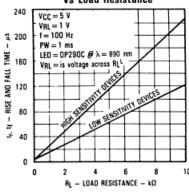

Performance

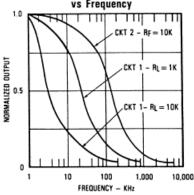
OP506W

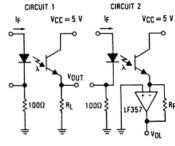

Typical Spectral Response


Coupling Characteristics


Normalized Collector Current vs. Angular Displacement

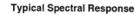

On-State Collector Current vs Irradiance

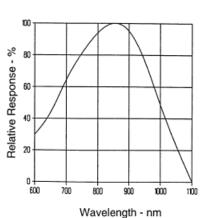

Normalized Collector Current vs Collector-to-Emitter Voltage

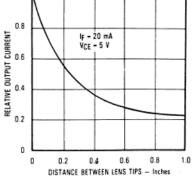

Rise and Fall Time vs Load Resistance

Normalized Output vs Frequency

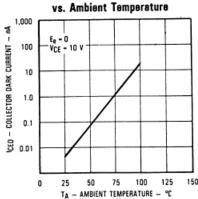
Switching Time Test Circuit

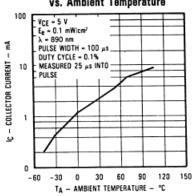

Test Conditions: Light source is pulsed LED with t_f and $t_f \le 500$ ns. IF is adjusted for VOUT = 1 Volt.

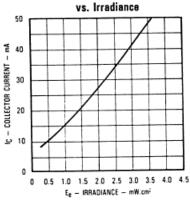

OP505, OP505W, OP506, OP506W OP535, OP705

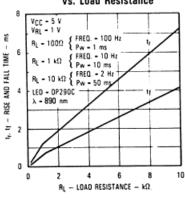

Performance

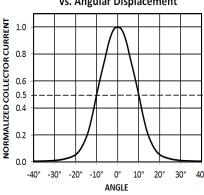
OP535A, OP535B, OP535D




Coupling Characteristics of OP165 and OP535


Collector Dark Current

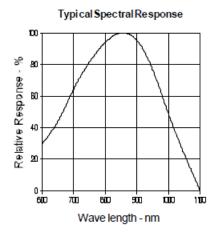

Collector Current vs. Ambient Temperature


Collector Current

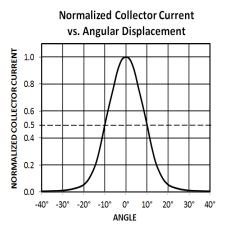
Rise and Fall Time vs. Load Resistance

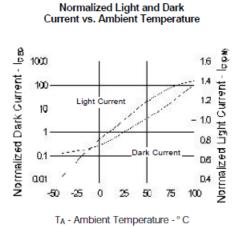
Normalized Collector Current vs. Angular Displacement

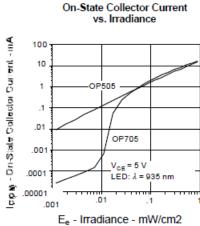
Switching Time Test Circuit

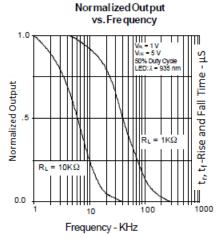

OP505, OP505W, OP506, OP506W OP535, OP705

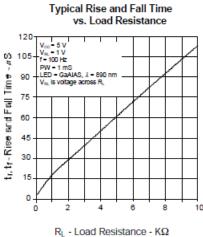
Performance

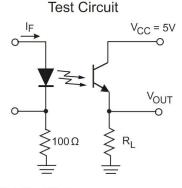

OP705A


Schematic




Collector


Emitter



Switching Time

Test Conditions: Light Source is pulsed LED with tr and tf ≤ 500nS. IF is adjusted for V_{OUT} = 1Volt.