Power Supply, Primary Switch Mode for Universal Use QUINT-PS-100-240AC/12DC/10

QUINT POWER provides:

- Preventive function monitoring through professional signaling
- Global use due to a wide range input
- A high level of operational safety even in complex global networks
- Reliable startup of heavy loads due to POWER BOOST

The reliability of a power supply determines the availability of individual components in a system and whether complex systems can function safely.
The globalization of markets increases the demands placed on the power supply. A wide range input and a high level of availability are required.
These requirements are met by Generation 2 QUINT POWER.

1. Short Description

The QUINT POWER product range offers universal DC power supplies from 60-960 W. Depending on the type, regulated and adjustable output voltages of 12 V DC, 24 V DC or 48 V DC are available for output currents of $2.5 \mathrm{~A}, 5 \mathrm{~A}, 10 \mathrm{~A}, 20 \mathrm{~A}, 30 \mathrm{~A}$, and 40 A .
These devices, which are designed as primary switched-mode regulators, operate with a high level of efficiency so that the heat loss is kept to a minimum.
The high level of operational safety is also ensured in complex global networks. QUINT POWER also operates in applications where static voltage dips, transient power supply failures or phase failure are common.
Large capacitors ensure mains buffering of more than 20 ms at full load. All 3-phase QUINT POWER units provide the complete output power even in the event of a continuous phase failure.
Reliable startup of heavy loads is ensured by a power reserve of up to 50% - the POWER BOOST.
Preventive function monitoring diagnoses an impermissible operating state and minimizes downtimes in your system. An active transistor output and an electrically isolated relay contact are provided for remote monitoring of this state.
This signal not only provides information on the device function, but also indicates a system overload at an early stage.

2. Area of Application

QUINT POWER can be used globally due to the consistent provision of a wide range input.

In this way, your entire system can be tested at any production location in the world and can be delivered to any location in the world without faulty switching of the input voltage. This reduces storage costs and logistical effort.

An international approval package including CB Scheme, UL 60950 for IT equipment, and UL 508 for industrial control equipment enables the device to be used globally.

Safe operation in adverse conditions is emphasized by the approval of all QUINT POWER units with 24 V output voltage by Germanischer Lloyd.

3. Technical Data

QUINT 12 V DC/10 A

7	solid	flexible		torque	
	$\left[\mathrm{mm}^{2}\right]$		AWG	$[\mathrm{Nm}]$	$[\mathrm{lb} \mathrm{in}]$.
Input	$0.2-2.5$	$0.2-2.5$	$25-14$	$0.5-0.6$	$4.4-5.3$
Output	$0.2-2.5$	$0.2-2.5$	$25-14$	$0.5-0.6$	$4.4-5.3$
Signal	$0.2-2.5$	$0.2-2.5$	$25-14$	$0.5-0.6$	$4.4-5.3$

Description
Power Supply
Primary switch mode for universal use

Technical Data

Input Data

Nominal input voltage
Input voltage range
Frequency
Current consumption (for nominal values)
Inrush current limiting $/ I^{2} \mathrm{t}\left(+25^{\circ} \mathrm{C}\left[+77^{\circ} \mathrm{F}\right]\right)$
Mains buffering for a nominal load (typical)
Switch-on time after applying the mains voltage
Transient surge voltage protection
Input fuse, internal
Recommended fuse

Discharge current for PE

Output Data (2)

Nominal output voltage U_{N} /tolerance
Setting range for the output voltage
Output current (continuous) during convection cooling
and nominal valuesPOWER BOOST $\mathrm{I}_{\text {BOOST }}-25^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $+104^{\circ} \mathrm{F}$)

Nominal output current $\mathrm{I}_{\mathrm{N}} \quad-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$
Derating
Short-circuit current limit
Startup of capacitive loads
System deviation on:
Load change static 10-90\% Load change dynamic 10-90\% input voltage change $\pm 10 \%$ No load/nominal load
Maximum power loss
Efficiency
Response time U OUT (10\%-90\%)
Residual ripple/switching peaks (20 MHz)
Can be connected in parallel
Internal surge voltage protection

Signal Output Data

DC OK (active) ${ }^{3}$
($\mathrm{U}_{\text {out }}>0.9 \times \mathrm{U}_{\mathrm{N}} \hat{=}$ high signal)
DC OK (electrically isolated) (4)
($\mathrm{U}_{\text {out }}>0.9 \times \mathrm{U}_{\mathrm{N}} \hat{=}$ contact closed)
LED (6) $\left(\mathrm{U}_{\text {out }}<0.9 \times \mathrm{U}_{\mathrm{N}} \hat{=}\right.$ LED flashing $)$

1 AC

Type	Order No.	$\frac{\text { Pcs. }}{\text { Pkt. }}$
QUINT-PS-100-240AC/12DC/10	2938811	1

100-240 V AC (wide range input)
85-264 V AC 90-350 V DC
45-65 Hz 0 Hz
1.5 A (120 V AC)/0.6 A (230 V AC), approximately

15 A, approximately/1 A^{2} s, approximately
50 ms
<1 s
Varistor
6.3 AT (device protection)

Circuit breaker 10 A or 16 A
Characteristic B (EN 60 898)
$<3.5 \mathrm{~mA}$
$12 \mathrm{~V} D C \pm 1 \%$
11.5-18.0 V DC
$16 \mathrm{~A}\left(\mathrm{U}_{\text {out }}=18 \mathrm{~V} \mathrm{DC}\right)$
$10 \mathrm{~A}\left(\mathrm{U}_{\text {out }}=18 \mathrm{~V} \mathrm{DC}\right)$
From $+60^{\circ} \mathrm{C}\left(+140^{\circ} \mathrm{F}\right)$, 2.5% per Kelvin
$\mathrm{I}_{\mathrm{BOOST}} \approx 16 \mathrm{~A}$, approximately
Unlimited
$<1 \%$, typical
$<4 \%$, typical
$<0.1 \%$, typical
$4 \mathrm{~W} / 22 \mathrm{~W}$, approximately
$>84 \%$ (for 230 VAC and nominal values)
$<2 \mathrm{~ms}$, typical
$<100 \mathrm{mV}$ pp (for nominal values)
To increase redundancy and power
Yes, limited to 25 V DC, approximately 25 V DC
+12 V DC signal (with regard to the device weight)
40 mA , maximum
30 V AC/DC, maximum; 1 A , maximum
Green LED

General Data	Input/output Input/PE Insulation voltage:			
Output/PE		$	$	Approval package
:---				
Electrical equipment of machines				
Safety transformers for switched-mode power supply units				
Electrical safety				
(of IT equipment)				
Industrial control equipment				
Equipping high voltage installations				
with electronic equipment				
Safety extra-low voltage				
Safe isolation				
Protection against electric shock				
Protection against dangerous shock currents,				
basic requirements for safe isolation				
in electrical equipment				
Limitation of harmonic line currents				
Mounting position				
Can be mounted with spacing				
Degree of protection				
Class of protection				
MTBF				
Housing version				
Dimensions (W x H x D) + DIN rail				
Weight				
Climatic Data				
Ambient temperature				
Humidity				
Vibration				
Shock				
Degree of pollution				
Climatic category				

C ϵ

Conforms to the EMC Directive 89/336/EEC and the Low Voltage Directive 73/23/EEC

EMC (Electromagnetic Compatibility)
Noise Immunity According to EN 61000-6-2:

Electrostatic discharge (ESD)	EN 61000-4-23)	Housing Contact discharge: Air discharge:
Electromagnetic HF field	EN 61000-4-3 ${ }^{\text {2 }}$	Housing Frequency: Field strength:
Fast transients (burst)	EN 61000-4-4 ${ }^{3}$	Input: Output: Signal:
Surge current loads	EN 61000-4-5 ${ }^{3}$	Input:
		Output: Signal:
Conducted interference	EN 61000-4-6 ${ }^{\text {2 }}$	I/O/S: Frequency: U_{0} :
Voltage dips	EN 61000-4-11 ${ }^{3}$	Input:
Simulation of radiophone	EN 50204	Frequency: Field strength:

Noise Emission According to EN 50081-2:		
Radio interference	EN 55011	
Radio interference	EN 55011	

EN 55011 corresponds to CISPR11/EN 55022 corresponds to CISPR22
EN 61000 corresponds to IEC 1000
${ }^{2)}$ Criterion A: Normal operating characteristics within the specified limits.
${ }^{3)}$ Criterion B: Temporary adverse effects on the operating characteristics that the device corrects independently.

4 kV AC (type test)/2 kV AC (routine test)
3.5 kV AC (type test)/2 kV AC (routine test)
$500 \vee \mathrm{DC}$ (routine test)

ÇBem cs

EN 60204 (Surge Voltage Category III)
EN 61 558-2-17
EN 60950/VDE 0805 ,
UL/C-UL Recognized UL 60950 u
UL/C-UL Listed UL 508 U(U) Us
EN 50178 (VDE 0160)
PELV (EN 60 204)
SELV (EN 60 950)
VDE 0100-410
DIN 57100-410

DIN VDE 0106-101
According to EN 61000-3-2
On horizontal NS 35 DIN rail according to EN 50022
$\geq 5 \mathrm{~cm}$ (1.969 in.)
0 cm
IP 20
I, with PE connection
$>500000 \mathrm{~h}$ according to IEC 1709 (SN 29 500)
AluNox (AIMg1), closed
Default upon delivery: Rotated 90° :
$(85 \times 130 \times 125 \mathrm{~mm}[3.346 \times 5.118 \times 4.921 \mathrm{in}]).(122 \times 130 \times 88 \mathrm{~mm}$
[$4.803 \times 5.118 \times 3.465 \mathrm{in}]$.
1.3 kg , approximately
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)\left(>+60^{\circ} \mathrm{C}\left[+140^{\circ} \mathrm{F}\right]\right.$ derating $)$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$
Up to 95% at $+25^{\circ} \mathrm{C}\left(+77^{\circ} \mathrm{F}\right)$, no condensation
$<15 \mathrm{~Hz}$, amplitude $\pm 2.5 \mathrm{~mm} / 15 \mathrm{~Hz}-150 \mathrm{~Hz}, 2.3 \mathrm{~g}, 90$ minutes
in resonant frequency
30 g all space directions
2 (according to EN 50 178)
3K3 (according to EN 60 721)

Requirements EN 61 000-6-2	QUINT-PS-100-240AC/12DC/10
	Level 4
4 kV	8 kV
8 kV	15 kV
	Level 3
80-1000 MHz	80-1000 MHz/1.4-2.0 GHz
$10 \mathrm{~V} / \mathrm{m}$	$10 \mathrm{~V} / \mathrm{m}$
2 kV asymmetrical ${ }^{5}$)	4 kV (Level 4)
2 kV asymmetrical ${ }^{5}$)	2 kV (Level 3)
1 kV asymmetrical ${ }^{5}$)	1 kV (Level 2)
2 kV asymmetrical ${ }^{5}$)	4 kV (Level 4)
1 kV symmetrical ${ }^{4}$)	$2 \text { kV (Level 4) }$
0.5 kV asymmetrical ${ }^{5}$)	0.5 kV (Level 1)
0.5 kV symmetrical ${ }^{4}$)	0.5 kV (Level 1)
1 kV asymmetrical ${ }^{5}$)	1 kV (Level 2)
asymmetrical ${ }^{5}$	Level 3
0.15-80 MHz	0.15-80 MHz
10 V	10 V
30% reduction of the input voltage	See input data:
for 0.5 periods	Mains buffering $>20 \mathrm{~ms}$
Not required	$900 \mathrm{MHz} / 1800 \mathrm{MHz}$
	$20 \mathrm{~V} / \mathrm{m}$
Class ${ }^{6}{ }^{\text {a }}$	EN 55011 (EN 55022) Class B7)
Class A^{6})	EN 55011 (EN 55022) Class B ${ }^{\text {7) }}$
${ }^{4)}$ symmetrical: Cable to cable ${ }^{5)}$ asymmetrical: Cable to ground	
${ }^{6)}$ Class A: Industrial application	
${ }^{7)}$ Class B: Industrial and domes	tic applications

4. Device View, Connections, and Control Elements

Figure 04
(1) AC input:

Input voltage 85-264 V AC
Frequency $45-65 \mathrm{~Hz}$
($0.2 \mathrm{~mm}^{2}$ to $2.5 \mathrm{~mm}^{2}$ solid)
($0.2 \mathrm{~mm}^{2}$ to $2.5 \mathrm{~mm}^{2}$ flexible)
(25-14 AWG)
Internal fuse 6.3 AT
Recommended fuse
10 A or 16 A c.b./Characteristic B
(2) DC output:

Output voltage 12 V DC (default), can be set from 11.5-18.0 V DC using a potentiometer (5) ($0.2 \mathrm{~mm}^{2}$ to $2.5 \mathrm{~mm}^{2}$ solid) ($0.2 \mathrm{~mm}^{2}$ to $2.5 \mathrm{~mm}^{2}$ flexible) (25-14 AWG) The device is idling-proof and short-circuit-proof.
(3) DC OK output active
(4) DC OK output electrically isolated
(5) Potentiometer (covered) 11.5-18.0 V DC
(6) DC OK LED
(7) Universal DIN rail adapter UTA 107

5. Safety and Warning Instructions

To ensure that the device can be operated safely and all functions can be used, please read these instructions carefully.

[^0]
6. Installation

6.1. Mounting

The power supply can be snapped onto all DIN rails according to EN 50022-35 and should be mounted horizontally (input terminal blocks facing downwards).

Installation Dimensions

To ensure sufficient convection, we recommend a minimum spacing of 5 cm (1.969 in.) to other modules above and below the device. No minimum spacing to other modules at the sides is required for proper operation of the device. The housing temperature can reach high values depending on the ambient temperature and the load of the device.

6.2. Narrow Mounting Position

The device is supplied ex works for a narrow mounting position.

Mounting:

Place the module with the DIN rail guideway on the top edge of the DIN rail and then snap it downwards. Removal:
Release the snap-on catch using a screwdriver and then detach the module from the bottom edge of the DIN rail.

6.3. Flat Mounting Position

A flat mounting position can be achieved by mounting the module onto the DIN rail at a 90° angle. To do this, mount the DIN rail adapter (UTA 107) (7) as shown in Figure 08. No additional mounting material is required. Mounting screws: Torx T10 (torque 0.8-0.9 Nm/7-8 lb in.).

Figure 08
6.4. Connection of Various Types of Network: 100-240 V AC Networks
TN -S network

Figure 09

Connection Cable:

The device is equipped with COMBICON connectors. This reliable user-friendly connection method enables quick device connection and safe isolation of the electrical connection, if required. Only operate connectors when the power is switched off.
To maintain UL approvals, use copper cables, which are designed for operating temperatures of $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$.

The following cable cross sections can be connected:

		Solid	Flexible	AW	Torque	
		$\left[\mathrm{mm}^{2}\right]$	$\left[\mathrm{mm}^{2}\right]$	$[\mathrm{Nm}]$		$[\mathrm{lb} \mathrm{in}]$.
(1)	Input:	$0.2-2.5$	$0.2-2.5$	$25-140.5-0.6$	$4.4-5.3$	
(2)	Output:	$0.2-2.5$	$0.2-2.5$	$25-14$	$0.5-0.6$	$4.4-5.3$
(3)	Signal:	$0.2-2.5$	$0.2-2.5$	$25-140.5-0.6$	$4.4-5.3$	

To maintain EN 60950/UL60950, flexible cables require ferrules.
For reliable and safe-to-touch
connection: Strip 7 mm (0.28 in.)
from the connector ends.

6.5. Input (${ }^{(1), ~ F i g u r e ~ 10) ~}$

The 100-240 V AC connection is made using screw connections L and N. The device can be connected to single-phase AC networks or to two external conductors for three-phase networks (TN, TT or IT network according to VDE 0100 T300/IEC364-3) with nominal voltages of 100-240 V AC.

Protecting the Primary Side

The device must be installed according to the specifications of EN 60 950. It must be possible to switch off the device using a suitable disconnecting device outside the power supply.
Note that an all-pole disconnecting device must be provided for two-phase operation using two external conductors for a three-phase network.

For example, primary side line protection could be used.

Figure 10
Additional device protection is not required, as an internal fuse is present.

Recommended Fuse:

Circuit breaker 6 A or 10 A, Characteristic B (or equivalent).
A suitable fuse must be fitted for DC applications.

If the internal fuse is blown, this is most probably due to a device fault.
In this case, the device should be checked in the factory.

6.6. Output (Figure 11)

The 12 V DC connection is made using the " + " and "-" screw connections on the screwconnection (2). The output voltage set upon delivery is 12 V DC.
The output voltage can be adjusted from 11.5 to 18.0 V DC on the potentiometer (5).

Protecting the Secondary Side:

The device is electronic short-circuit-proof and idlingproof. In the event of an error, the output voltage is limited to a maximum of 25 V DC.
It should be ensured that all output cables are the correct size for the maximum output current or have separate fuse protection.
The secondary side cables should have large cross sections to keep voltage drops on the cables to a minimum.

Signaling

Both DC OK outputs are used for preventive function monitoring of the power supply. An electrically isolated signal contact (4) and an active DC OK signal (3) are available. In addition, the DC OK LED (6) can be used to evaluate the function of the power supply directly at the installation location.

Green "DC OK" LED	ON	Flashing	OFF
Active DC OK switching output (with reference to "-")	$\mathrm{U}=12 \mathrm{~V}$	$\mathrm{U}=0 \mathrm{~V}$	$\mathrm{U}=0 \mathrm{~V}$
Electrically isolated DC OK output	Closed	Open	Open
Meaning	Output voltage greater than 90\% of the set voltage	Output voltage less than 90% of the set voltage	No voltage at the output
Description	Output voltage and current OK	QUINT POWER operating, but: - Error at the load - Current consumption greater than $\mathrm{I}_{\text {BOOST }}$ - Output short circuit	QUINT POWER not operating, because: - No mains voltage present - Primary side fuse is blown - Device is faulty

Electrically Isolated Contact (Figure 12)

When opened, the electrically isolated signal contact indicates that the output voltage has fallen more than 10% below the set value. Signals and ohmic loads up to a maximum of 30 V and currents up to a maximum of 1 A can be switched.
With heavy inductive loads, e.g., a relay, a suitable protective circuit (e.g., free-wheeling diode) is required.

Active Signal Output (Figure 13)

The 12 V DC signal is between the "DC OK" and "-" connection terminal blocks and can be loaded with 40 mA maximum. This signal output indicates that the output voltage has fallen more than 10% below the set value when "active high" changes to "low".
The DC OK signal is isolated from the power output. This ensures that a separate supply does not enter from devices connected in parallel.
The 12 V DC signal can be connected directly to a logic input for evaluation.

Figure 11

Figure 12

Signal Loop (Figure 14)

The two signal outputs mentioned above can be combined easily.

Example: Monitoring two devices

Use the active alarm output of device 1 and loop in the electrically isolated alarm output of device 2 . In the event of an error, a group error message is generated. It is possible to loop any number of devices.

This signal combination saves on wiring costs and logic inputs.

DC OK LED
The green DC OK LED enables local function evaluation in the control cabinet.

LED ON	Normal operation of the power supply
LED flashing	The output voltage has fallen by more than 10\%. There is a secondary load short circuit or overload outside the POWER BOOST area.
LED OFF	No mains voltage is present or there is a device fault.

7. Function

7.1. Output Characteristic Curve

At ambient temperatures $\mathrm{T}_{\mathrm{amb}}<+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$, the device can continuously supply 16 A with a 12 V DC output voltage ($\mathrm{P}_{\text {out }}=190 \mathrm{~W}$).

With heavy loads, the working point demonstrates the U/I characteristic curve shown in Figure 14. The output current is limited to $I_{\text {BOOST }}$.
The secondary voltage is reduced until the short circuit on the secondary side is removed.
The U/I characteristic curve ensures that both heavy capacitive loads and devices with DC/DC converters can be supplied by QUINT POWER in the input circuit without any problems.
Connected fuses are reliably tripped. The selectivity in your system configuration is ensured at all times.

Figure 14

Figure 15

7.2. Temperature Response

At an ambient temperature of up to $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$ the device continuously supplies an output current of 16 A.
The device can supply a nominal output current of 10 A up to an ambient temperature of $+60^{\circ} \mathrm{C}\left(+140^{\circ} \mathrm{F}\right)$.

The output power must be decreased by 2.5% per Kelvin temperature increase for ambient temperatures above $+60^{\circ} \mathrm{C}\left(+140^{\circ} \mathrm{F}\right)$.
At ambient temperatures above $+70^{\circ} \mathrm{C}\left(+158^{\circ} \mathrm{F}\right)$ or in the event of a thermal overload, the device does not switch off. The output power is decreased so low that device protection is provided. Once the device has cooled, the output power is increased again.

Figure 16

7.3. Parallel Operation

Devices of the same type can be connected in parallel to increase both redundancy and power. The default setting does not have to be adjusted.

If the output voltage is adjusted, an even current distribution can be ensured by precisely setting all power supplies that are operated in parallel to the same output voltage.

To ensure symmetrical current distribution we recommend that all cable connections from the power supply to the DIN rail are the same length and have the same cross section.

Depending on the system, for parallel connection of more than two power supplies a protective circuit should be installed at each individual device output (e.g., decoupling diode or DC fuse). This means that in the event of a secondary device fault high return currents are avoided.

7.4. Redundancy Operation (Figure 17)

Redundant connections are designed for supplying systems, which place particularly high requirements on operational safety. If a fault occurs in the primary circuit of device 1 , device 2 automatically takes over the complete power supply without interruption and vice versa.

For this purpose, the power supplies to be connected in parallel must be large enough that the total current requirements of all loads can be fully met by one power supply.
External decoupling diodes are required for 100\% redundancy.

Figure 17

7.5. Power Increase (Figure 18)

The output current can be increased to $\mathbf{n} \mathbf{x} \mathbf{I}_{\mathbf{N}}$ where \mathbf{n} is the number of devices connected in parallel.
The parallel connection for power increase can be used to extend existing systems. A parallel connection is recommended if the power supply does not cover the current consumption of the most powerful load.
Otherwise, the loads should be divided over independent individual devices.
A maximum of five devices can be connected in parallel.

[^0]: Caution: Never carry out work when the power is turned on, this is highly dangerous.

