## AK1228

10~2000MHz Low Noise Mixer

## 1. General Description

AK1228 is a high linearity and low noise mixer. Signal input frequency range coverage is from 10 to 2000 MHz and output coverage is from 10 to 1000 MHz . AK1228 can be driven by a single ended signal input and a low-power differential LO input that can be driven with a differential or single ended LO. The signal output ports are differential open drain outputs. The analog circuit characteristics and power consumption performances can be optimized by the resistance connected to the BIAS Pin.

## 2. Features

```
\square Input Frequency:
10 MHz to 2000 MHz
```

Output Frequency:
Operating Supply Current:
Analog Circuit Characteristics:LO Input Level:
Operating Supply Voltage:
Package:
Operating Temperature:

10 MHz to 1000 MHz
4.5 mA to 10.5 mA

Current Consumption: 10.5 mA , IIP3:+12dBm, Gain: $4 \mathrm{dBm}, \mathrm{NF}: 8.5 \mathrm{~dB}$
-10 to +5 dBm
2.7 to 5.25 V

16 pin $\operatorname{UQFN}$ ( 0.5 mm pitch, $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.60 \mathrm{~mm}$ )
-40 to $85^{\circ} \mathrm{C}$

## 3. Applications

$\square$ Two-way Radios (PMR/LMR)
$\square$ Radio Communications for disaster prevention
$\square$ Marine Radios
$\square$ Amateur Radios
$\square$ Specified Low Power Radios
$\square$ Telemeter, Telecontrol
$\square$ Wireless Microphone

## 4. Table of Contents

1. General Description ..... 1
2. Features .....  1
3. Applications .....  1
4. Table of Contents .....  2
5. Block Diagram and Pin Configurations .....  3
6. Pin Functions Description .....  4
7.Absolute Maximum Ratings .....  4
8.Reccomended Operating Conditions .....  4
7. Electrical Characteristics .....  5
8. Typical Performance .....  6
9. Typical Evaluation Board Schematic ..... 17
10. LSI Interface Schematic ..... 18
11. Application Information ..... 19
12. Outer Dimensions ..... 28
13. Marking ..... 29

## 5. Block Diagram and Pin Configurations



Figure 1. Block Diagram


Figure 2. Package Pin Layout

## 6. Pin Functions Description

Table 1. Pin Function

| No. | Name | I/O | Pin Function | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| 1 | IN | AI | Signal input | Connecting a inductor between this pin and ground. |
| 2 | VSS | G | Ground pin |  |
| 3 | VSS | G | Ground pin |  |
| 4 | LOINN | AI | LO Input Negative |  |
| 5 | LOINP | AI | LO Input Positive |  |
| 6 | BIAS1 | AIO | Resistance pin for current adjustment | Connecting a resistor between this pin and ground. |
| 7 | BIAS2 | AIO | Resistance pin for current adjustment | Connecting a resistor between this pin and ground. |
| 8 | VDD | P | Power Supply |  |
| 9 | VDD | P | Power Supply |  |
| 10 | VDD | P | Power Supply |  |
| 11 | OUTN | AO | Signal Output Negative | This pin is open drain output. <br> It needs power feeding via an inductor. |
| 12 | OUTP | AO | Signal Output Positive | This pin is open drain output. <br> It needs power feeding via an inductor. |
| 13 | VSS | G | Ground pin |  |
| 14 | POWER DOWN | DI | Power Down control pin | High : Power OFF <br> Low : Power ON |
| 15 | BIAS <br> SELECT | DI | Bias Resistance select pin | High : BIAS2 pin is enabled Low : BIAS1 pin is enabled |
| 16 | VSS | G | Ground pin |  |

Note 1. The exposed pad at the center of the backside should be connected to ground.
Note 2. With the power supply voltage is not applied to VDD, do not apply a voltage to each input pin.

| AI:Analog input pin | AO:Analog output pin | AIO:Analog I/O pin |
| :--- | :--- | :--- |
| P: Power supply pin | G: Ground pin | DI:Digital input pin |

## 7.Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Unit | Remarks |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Supply Voltage | Vdd | -0.3 | 5.5 | V |  |
| Signal Input Power | INPOW |  | 12 | dBm |  |
| LO Input Power | LOPOW |  | 12 | dBm |  |
| Storage Temperature | Tstg | -55 | 125 | ${ }^{\circ} \mathrm{C}$ |  |

Exceeding these maximum ratings may result in damage to the AK1228. Normal operation is not guaranteed at these extremes.

## 8.Reccomended Operating Conditions

Table 3. Recommended Operating Range

| Parameter | Symbol | Min. | Typ. | Max. | Unit | Remarks |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Operating Temperature | Ta | -40 |  | 85 | ${ }^{\circ} \mathrm{C}$ |  |
| Supply Voltage | Vdd | 2.7 | 5 | 5.25 | V |  |

[^0]
## 9. Electrical Characteristics

## 1.Analog Circuit Characteristics

Unless otherwise noted Signal Output $=50 \mathrm{MHz}$, Output Load Resistor (Rload) $=2.2 \mathrm{k} \Omega$, $\mathrm{Vdd}=2.7$ to 5.25 V , $\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$, LO Input Level $=-10 \mathrm{dBm}$ to +5 dBm . Test circuit is shown in Figure 3 .

Table 4. Analog Circuit Characteristics

| Parameter | Min. | Typ. | Max. | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Signal Input Frequency | 10 |  | 2000 | MHz |  |
| LO Input Frequency | 10 |  | 2000 | MHz |  |
| Signal Output Frequency | 10 |  | 1000 | MHz |  |
| LO Input Power | -10 | 0 | +5 | dBm |  |
| Current Adjustment Resistor (Rbias) | 39 |  | 100 | $\mathrm{k} \Omega$ |  |
| $\operatorname{IDD}($ Rbias $=39 \mathrm{k} \Omega)$ | 7.5 | 10.5 | 15 | mA | The total current of VDD, OUTP pin and OUTN pin. |
| IDD (Rbias $=100 \mathrm{k} \Omega)$ | 3 | 4.5 | 6.5 | mA |  |
| IDD (POWER DOWN = Vdd) |  | 1 | 10 | uA |  |
| $\mathrm{IN}=600 \mathrm{MHz}, \mathrm{LOIN}=550 \mathrm{MHz}(0 \mathrm{dBm}), \mathrm{Rbias}=39 \mathrm{k} \Omega, \mathrm{Vdd}=3 \mathrm{~V}$ |  |  |  |  |  |
| Conversion Gain | 1.5 | 4 | 6 | dB |  |
| SSB Noise Figure (NF) |  | 8.5 | 11 | dB | Design guarantee value |
| IP1dB | -5 | -1 |  | dBm |  |
| IIP3 | 8 | 12 |  | dBm | Design guarantee value |

2. Digital Circuit Characteristics

This table is for POWER DOWN pin and BIAS SELECT pin.

Table 5. Digital Circuit Characteristics

| Parameter | Symbol | Conditions | Min. | Typ. | Max. | Unit | Remarks |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| High level input voltage | Vih |  | $0.8 \times \mathrm{Vdd}$ |  |  | V |  |
| Low level input voltage | Vil |  |  |  | $0.2 \times \mathrm{Vdd}$ | V |  |
| High level input current | Iih | Vih $=\mathrm{Vdd}=5.25 \mathrm{~V}$ | -1 |  | 1 | $\mu \mathrm{~A}$ |  |
| Low level input current | Iil | Vil $=0 \mathrm{~V}, \mathrm{Vdd}=5.25 \mathrm{~V}$ | -1 |  | 1 | $\mu \mathrm{~A}$ |  |

## 10. Typical Performance

Output Load Resistor (Rload) $=2.2 \mathrm{k} \Omega, \mathrm{Vdd}=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, LO Input Level $=0 \mathrm{dBm}$, Current Adjustment Resistor (Rbias) $=39 \mathrm{k} \Omega$. Test circuit is shown in Figure 3.

Table 6. Typical Performance

| Parameter | Frequency | Min. Typ. Max. | Unit |
| :---: | :---: | :---: | :---: |
| Conversion Gain | $\begin{aligned} & \text { IN }=160 \mathrm{MHz}, \text { OUT }=70 \mathrm{MHz}, \text { LOIN }=230 \mathrm{MHz} \\ & \mathrm{IN}=400 \mathrm{MHz}, \text { OUT }=70 \mathrm{MHz}, \text { LOIN }=470 \mathrm{MHz} \\ & \mathrm{IN}=800 \mathrm{MHz}, \text { OUT }=11 \mathrm{MHz}, \text { LOIN }=811 \mathrm{MHz} \\ & \mathrm{IN}=1500 \mathrm{MHz}, \text { OUT }=250 \mathrm{MHz}, \text { LOIN }=1250 \mathrm{MHz} \\ & \mathrm{IN}=50 \mathrm{MHz}, \text { OUT }=450 \mathrm{MHz}, \text { LOIN }=400 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 3.7 \\ & 3.7 \\ & 3.3 \\ & 2.8 \\ & 2.7 \end{aligned}$ | dB |
| SSB Noise Figure (NF) | $\begin{aligned} & \text { IN }=160 \mathrm{MHz}, \text { OUT }=70 \mathrm{MHz}, \text { LOIN }=230 \mathrm{MHz} \\ & \mathrm{IN}=400 \mathrm{MHz}, \text { OUT }=70 \mathrm{MHz}, \text { LOIN }=470 \mathrm{MHz} \\ & \mathrm{IN}=800 \mathrm{MHz}, \text { OUT }=11 \mathrm{MHz}, \text { LOIN }=811 \mathrm{MHz} \\ & \mathrm{IN}=1500 \mathrm{MHz}, \text { OUT }=250 \mathrm{MHz}, \text { LOIN }=1250 \mathrm{MHz} \\ & \mathrm{IN}=50 \mathrm{MHz}, \text { OUT }=450 \mathrm{MHz}, \text { LOIN }=400 \mathrm{MHz} \end{aligned}$ | $\begin{gathered} 8.5 \\ 8.5 \\ 9.6 \\ 10.3 \\ 9.9 \end{gathered}$ | dB |
| IP1dB | $\begin{aligned} & \text { IN }=160 \mathrm{MHz}, \text { OUT }=70 \mathrm{MHz}, \text { LOIN }=230 \mathrm{MHz} \\ & \mathrm{IN}=400 \mathrm{MHz}, \text { OUT }=70 \mathrm{MHz}, \text { LOIN }=470 \mathrm{MHz} \\ & \mathrm{IN}=800 \mathrm{MHz}, \text { OUT }=11 \mathrm{MHz}, \text { LOIN }=811 \mathrm{MHz} \\ & \mathrm{IN}=1500 \mathrm{MHz}, \text { OUT }=250 \mathrm{MHz}, \text { LOIN }=1250 \mathrm{MHz} \\ & \mathrm{IN}=50 \mathrm{MHz}, \text { OUT }=450 \mathrm{MHz}, \text { LOIN }=400 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 3.1 \\ & 1.6 \\ & 1.5 \\ & 1.5 \end{aligned}$ | dBm |
| IIP3 | $\begin{aligned} & \text { IN }=160 \mathrm{MHz}, \text { OUT }=70 \mathrm{MHz}, \text { LOIN }=230 \mathrm{MHz} \\ & \mathrm{IN}=400 \mathrm{MHz}, \text { OUT }=70 \mathrm{MHz}, \text { LOIN }=470 \mathrm{MHz} \\ & \mathrm{IN}=800 \mathrm{MHz}, \text { OUT }=11 \mathrm{MHz}, \text { LOIN }=811 \mathrm{MHz} \\ & \mathrm{IN}=1500 \mathrm{MHz}, \text { OUT }=250 \mathrm{MHz}, \text { LOIN }=1250 \mathrm{MHz} \\ & \mathrm{IN}=50 \mathrm{MHz}, \text { OUT }=450 \mathrm{MHz}, \text { LOIN }=400 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 14.0 \\ & 13.7 \\ & 12.0 \\ & 10.1 \\ & 13.4 \\ & \hline \end{aligned}$ | dBm |

## 1. Current Adjustment Resistor vs. IDD, IDD vs. Gain, NF, IIP3, IP1dB

The analog circuit characteristics and power consumption performances can be optimized by the resistance connected to the BIAS Pin (Rbias). Signal Input $=600 \mathrm{MHz}$, Signal Output $=50 \mathrm{MHz}$, LO Input $=550 \mathrm{MHz}$, Output Load Resistor (Rload) $=2.2 \mathrm{k} \Omega, \mathrm{Vdd}=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, LO Input Level $=0 \mathrm{dBm}$, Current Adjustment Resistor $($ Rbias $)=39 \mathrm{k} \Omega$.






## 2. Temperature vs. Gain, NF, IIP3, IP1dB, IDD

Signal Input $=600 \mathrm{MHz}$, Signal Output $=50 \mathrm{MHz}$, LO Input $=550 \mathrm{MHz}$,Output Load Resistor $($ Rload $)=2.2 \mathrm{k} \Omega$, Vdd $=3 \mathrm{~V}$, LO Input Level $=0 \mathrm{dBm}$.





Resistance for current adjustment

| 工 | $39 \mathrm{k} \Omega(\cong 10.5 \mathrm{~mA})$ |
| :--- | :--- |
| ー - - | $56 \mathrm{k} \Omega(\cong 7.5 \mathrm{~mA})$ |
| $\cdots \ldots \ldots \ldots$ | $100 \mathrm{k} \Omega(\cong 4.5 \mathrm{~mA})$ |

## 3. Supply voltage vs. Gain, NF, IIP3, IP1dB, IDD

Signal Input $=600 \mathrm{MHz}$, Signal Output $=50 \mathrm{MHz}$, LO Input $=550 \mathrm{MHz}$, Output Load Resistor $($ Rload $)=$ $2.2 \mathrm{k} \Omega, \mathrm{Ta}=25^{\circ} \mathrm{C}$, LO Input Level $=0 \mathrm{dBm}$.





Resistance for current adjustment

| — | $39 \mathrm{k} \Omega(\cong 10.5 \mathrm{~mA})$ |
| :--- | :--- |
| ー - - | $56 \mathrm{k} \Omega(\cong 7.5 \mathrm{~mA})$ |
| $\cdots \ldots \ldots \ldots$ | $100 \mathrm{k} \Omega(\cong 4.5 \mathrm{~mA})$ |

## 4. LO input power vs. Gain, NF, IIP3, IP1dB

Signal Input $=600 \mathrm{MHz}$, Signal Output $=50 \mathrm{MHz}$, LO Input $=550 \mathrm{MHz}$, Output Load Resistor $($ Rload $)=$ $2.2 \mathrm{k} \Omega, \mathrm{Vdd}=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$.


Resistance for current adjustment

| — | $39 \mathrm{k} \Omega(\cong 10.5 \mathrm{~mA})$ |
| :--- | :--- |
| - - | $56 \mathrm{k} \Omega(\cong 7.5 \mathrm{~mA})$ |
| $\ldots \ldots \ldots \ldots$ | $100 \mathrm{k} \Omega(\cong 4.5 \mathrm{~mA})$ |

Signal Input $=2000 \mathrm{MHz}$ ，Signal Output $=50 \mathrm{MHz}$ ，LO Input $=1950 \mathrm{MHz}$ ，Output Load Resistor $($ Rload $)=$ $2.2 \mathrm{k} \Omega, \mathrm{Vdd}=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ ．

For high signal input frequency usage，it is recommended to increase the current consumption and reduce the LO input level．


Resistance for current adjustment

| — | $39 \mathrm{k} \Omega(\cong 10.5 \mathrm{~mA})$ |
| :--- | :--- |
| ーーー | $56 \mathrm{k} \Omega(\cong 7.5 \mathrm{~mA})$ |
| $\ldots \ldots \ldots \ldots$ | $100 \mathrm{k} \Omega(\cong 4.5 \mathrm{~mA})$ |

## 5. Signal input frequency vs. Gain, NF, IIP3, IP1dB

Signal Input $>600 \mathrm{MHz}$
Signal Input $\leq 600 \mathrm{MHz}$
Signal Output $=50 \mathrm{MHz}$, Output Load Resistor $($ Rload $)=2.2 \mathrm{k} \Omega, \mathrm{Vdd}=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, LO Input Level $=$ 0 dBm .


Resistance for current adjustment

| — | $39 \mathrm{k} \Omega(\cong 10.5 \mathrm{~mA})$ |
| :--- | :--- |
| - |  |
| $\ldots \ldots \ldots \ldots$ | $56 \mathrm{k} \Omega(\cong 7.5 \mathrm{~mA})$ |
| $\ldots \ldots \ldots$ | $100 \mathrm{k} \Omega(\cong 4.5 \mathrm{~mA})$ |

## 6. Signal output frequency vs. Gain, NF, IIP3, IP1dB

Signal Output $\leq 150 \mathrm{MHz} \quad: \quad$ LO Input frequency < Signal Input frequency (Lower LO)
Signal Output $>150 \mathrm{MHz}$ : LO Input frequency > Signal Input frequency (Upper LO)
Signal Input $=600 \mathrm{MHz}$, Output Load Resistor $($ Rload $)=2.2 \mathrm{k} \Omega, \mathrm{Vdd}=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, LO Input Level $=$ 0 dBm .


Resistance for current adjustment

| — | $39 \mathrm{k} \Omega(\cong 10.5 \mathrm{~mA})$ |
| :--- | :--- |
| - - - | $56 \mathrm{k} \Omega(\cong 7.5 \mathrm{~mA})$ |
| $\ldots \ldots \ldots \ldots$ | $100 \mathrm{k} \Omega(\cong 4.5 \mathrm{~mA})$ |

Signal Input $=140 \mathrm{MHz}$, LO Input frequency $<$ Signal Output frequency (Lower LO), Output Load Resistor $($ Rload $)=2.2 \mathrm{k} \Omega, \mathrm{Vdd}=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{LO}$ Input Level $=0 \mathrm{dBm}$.


Resistance for current adjustment

| — | $39 \mathrm{k} \Omega(\cong 10.5 \mathrm{~mA})$ |
| :--- | :--- |
| - - - | $56 \mathrm{k} \Omega(\cong 7.5 \mathrm{~mA})$ |
| $\ldots \ldots \ldots \ldots$ | $100 \mathrm{k} \Omega(\cong 4.5 \mathrm{~mA})$ |

## 7. Output Load Resistor (Rload) vs. Gain, NF, IIP3, IP1dB

Signal output ports are differential open drain outputs. Gain can be optimized by the resistance connected to the OUTP and OUTN Pins (Rload). Signal Input $=600 \mathrm{MHz}$, Signal Output $=50 \mathrm{MHz}$, LO Input $=550 \mathrm{MHz}$, $\mathrm{Vdd}=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, LO Input Level $=0 \mathrm{dBm}$.


Resistance for current adjustment

| — | $39 \mathrm{k} \Omega(\cong 10.5 \mathrm{~mA})$ |
| :--- | :--- |
| ーー - | $56 \mathrm{k} \Omega(\cong 7.5 \mathrm{~mA})$ |
| $\ldots \ldots \ldots \ldots$ | $100 \mathrm{k} \Omega(\cong 4.5 \mathrm{~mA})$ |

## 8．Half IF， $1 / 3$ IF

IF Signal Output $=50 \mathrm{MHz}$, LO Input $=550 \mathrm{MHz}$ ，Output Load Resistor $($ Rload $)=2.2 \mathrm{k} \Omega, \mathrm{Vdd}=3 \mathrm{~V}, \mathrm{Ta}=$ $25^{\circ} \mathrm{C}, \mathrm{LO}$ Input Level $=0 \mathrm{dBm}$, Current Adjustment Resistor $($ Rbias $)=39 \mathrm{k} \Omega$ ．


RF Signal Input Frequency

| ＿ | $\mathrm{RF}=600 \mathrm{MHz}$ |
| :--- | :--- |
| ーーーー | $\mathrm{LO}+\mathrm{IF} / 2=575 \mathrm{MHz}$ |
| $\ldots \ldots \ldots \ldots$. | $\mathrm{LO}+\mathrm{IF} / 3=566.7 \mathrm{MHz}$ |

IF Signal Output $=50 \mathrm{MHz}$ ，LO Input $=1950 \mathrm{MHz}$ ，Output Load Resistor $($ Rload $)=2.2 \mathrm{k} \Omega, \mathrm{Vdd}=3 \mathrm{~V}, \mathrm{Ta}=$ $25^{\circ} \mathrm{C}$ ，LO Input Level $=0 \mathrm{dBm}$ ，Current Adjustment Resistor $($ Rbias $)=39 \mathrm{k} \Omega$ ．


RF Signal Input Frequency
$\longrightarrow \quad \mathrm{RF}=2000 \mathrm{MHz}$

ー ー ー－ $\mathrm{LO}+\mathrm{IF} / 2=1975 \mathrm{MHz}$
．．．．．．．．．．．．．．． $\mathrm{LO}+\mathrm{IF} / 3=1966.7 \mathrm{MHz}$

## 9．Leakage

Signal Output $=50 \mathrm{MHz}$ ，LO Input frequency $<$ Signal Input frequency（Lower LO），Signal Input Level $=$ -20 dBm ，Output Load Resistor（Rload）$=2.2 \mathrm{k} \Omega, \mathrm{Vdd}=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ ，LO Input Level $=0 \mathrm{dBm}$ ，Current Adjustment Resistor（Rbias）$=39 \mathrm{k} \Omega$ ．

Table 7．Leakage

| Parameter | Signal Input Frequency | Typ．［dBc］ |
| :--- | :---: | :---: |
| IN－LO Leakage | 600 MHz | -54 |
|  | 2000 MHz | -54 |
| IN－OUT Leakage | 600 MHz | -48 |
|  | LO－IN Leakage | 2000 MHz |
| LO－OUT Leakage |  | -48 |
|  | 2000 MHz | -47 |
|  | 600 MHz | -40 |
|  | 2000 MHz | -57 |

## 11. Typical Evaluation Board Schematic



Figure 3. Typical Evaluation Board Schematic

Table 8. Typical Evaluation Board Component Values for Downconversion Applications $($ Signal Input $=600 \mathrm{MHz}$, Signal Output $=50 \mathrm{MHz})$

| Ref. | Value | Size | Part Number | Ref. | Value | Size | Part Number |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| T1 | $4: 1$ |  | Mini-Circuits ADT4-6T | C1 | 8.2 pF | 1005 | Murata GRM1552C1H8R2DZ01 |
| R1 | $51 \Omega$ | 1005 | KOA RK73K1ETP510 | C2 | 10 nF | 1005 | Murata GRM155B31H103KA88 |
| Rload | $2.2 \mathrm{k} \Omega$ | 1005 | KOA RK73K1ETP222 | C3 | 10 nF | 1005 | Murata GRM155B31H103KA88 |
| Rbias | $39 \mathrm{k} \Omega$ | 1005 | KOA RK73K1ETP393 | C4 | 3.3 pF | 1005 | Murata GRM1553C1H3R3CZ01 |
| Rbias2 | $100 \mathrm{k} \Omega$ | 1005 | KOA RK73K1ETP104 | C5 | - | - | Not Mounted |
| L1 | 15 nH | 1005 | Murata LQG15HS15NJ02 | C6 | 10 uF | 1608 | Murata GRM188R60J106ME47 |
| L2 | - | - | Not Mounted | C 7 | 10 nF | 1005 | Murata GRM155B31H103KA88 |
| L3 | 1000 nH | 2012 | Murata LQW21HN1R2J00 | C 8 | 100 pF | 1005 | Murata GRM1552C1H101JA01 |
| L4 | 1000 nH | 2012 | Murata LQW21HN1R2J00 |  |  |  |  |

Table 9. Typical Evaluation Board Component Values for Upconversion Applications
(Signal Input $=50 \mathrm{MHz}$, Signal Output $=450 \mathrm{MHz}$ )

| Ref. | Value | Size | Part Number | Ref. | Value | Size | Part Number |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| T1 | $4: 1$ |  | Mini-Circuits JTX4-10T | C1 | 120 pF | 1005 | Murata GRM1552C1H121JA01 |
| R1 | $51 \Omega$ | 1005 | KOA RK73K1ETP510 | C2 | 10 nF | 1005 | Murata GRM155B31H103KA88 |
| Rload | $2.2 \mathrm{k} \Omega$ | 1005 | KOA RK73K1ETP222 | C3 | 10 nF | 1005 | Murata GRM155B31H103KA88 |
| Rbias | $39 \mathrm{k} \Omega$ | 1005 | KOA RK73K1ETP393 | C4 | - | - | Not Mounted |
| Rbias2 | $100 \mathrm{k} \Omega$ | 1005 | KOA RK73K1ETP104 | C5 | 2.7 pF | 1005 | Murata GRM1553C1H2R7CZ01 |
| L1 | 270 nH | 1005 | Murata LQG15HSR27J02 | C6 | 10 uF | 1608 | Murata GRM188R60J106ME47 |
| L2 | - | - | Not Mounted | C7 | 10 nF | 1005 | Murata GRM155B31H103KA88 |
| L3 | 68 nH | 1608 | Murata LQW18AN68NG00 | C8 | 100 pF | 1005 | Murata GRM1552C1H101JA01 |
| L4 | 68 nH | 1608 | Murata LQW18AN68NG00 |  |  |  |  |

12. LSI Interface Schematic

| No. | Name | I/O | Function |
| :---: | :---: | :---: | :---: |
| 1 | IN | I | Signal Input pin |
| 4 | LOINN | I | LO Input pins |
| 5 | LOINP |  |  |
| 6 | BIAS1 | I/O | Analog I/O pins |
| 7 | BIAS2 |  |  |
| 11 | OUTN | O | Signal Output pins |
| 12 | OUTP |  |  |
| 14 | POWER DOWN | I | Digital Input pins |
| 15 | BIAS SELECT |  |  |

## 13. Application Information

## -Impedance matching network for Signal Input pin

Signal Input port with impedance matching network (highpass filter) is shown in Figure 4. Typical evaluation board component values in $50 \Omega$ interface are shown in Table 10.


Figure 4. Signal Input port with impedance matching network

Table 10. Signal Input port with impedance matching network

| Signal Input Frequency $[\mathrm{MHz}]$ | $\mathrm{C} 1[\mathrm{pF}]$ | $\mathrm{L} 1[\mathrm{nH}]$ | $\mathrm{L} 2[\mathrm{nH}]$ |
| :---: | :---: | :---: | :---: |
| 10 | 470 | 1500 | - |
| 160 | 27 | 82 | - |
| 300 | 15 | 47 | - |
| 400 | 10 | 22 | - |
| 600 | 8.2 | 15 | - |
| 800 | 5.6 | 9.1 | - |
| 1300 | 8.2 | 5.6 | - |
| 1500 | 5.6 | 3.3 | - |
| 2000 | 3.3 | 18 | 2.2 |

## -Impedance matching network for LO Input pin

LOIN port can be matched with resistive impedance matching network in 10 MHz < LO Input < 2000MHz. Typical evaluation board component values in $50 \Omega$ interface is shown in Figure 5.


Figure 5. LO input port with impedance matching network

## -Impedance matching network for Signal Output pin

Signal output port with impedance matching network (lowpass filter and balun) is shown in Figure 6. OUTP and OUTN pins need power feeding via center tap of balun.
Typical evaluation board component values in $50 \Omega$ interface are shown in Table 11.


Figure 6. Signal output port with impedance matching network
Table 11. Signal output port with impedance matching network

| Signal Output Frequency $[\mathrm{MHz}]$ | $\operatorname{Rload}[\mathrm{k} \Omega]$ | $\mathrm{L} 3 / \mathrm{L} 4[\mathrm{nH}]$ | $\mathrm{C} 4[\mathrm{pF}]$ | $\mathrm{C} 5[\mathrm{pF}]$ |
| :---: | :---: | :---: | :---: | :---: |
| 11 | 2.2 | 4700 | 18 | - |
| 20 | 2.2 | 2200 | 10 | - |
| 50 | 2.2 | 1000 | 3.3 | - |
| 70 | 2.2 | 680 | 2.2 | - |
| 100 | 2.2 | 470 | 1.2 | - |
| 150 | 2.2 | 330 | 0.4 | - |
| 250 | 2.2 | 180 | - | 0.5 |
| 800 | 2.2 | 22 | - | 2.2 |

## -Impedance matching network with LC



Figure 7. Impedance matching network with LC
Impedance matching network with LC is shown in Figure 7. AK1228 has open drain outputs, so RL1 + RL2 is output load resistance. C11 and L11 compose lowpass filter. C12 and L12 are for highpass filter. C13 is DC blocking capacitor and L13 is RF choke. OUTP and OUTN pins need power feeding via L11, L12 and L13.

The differential voltage from OUTP/N can be converted to a single-ended by L11, L12, C11 and C12 properly.
The differential impedance (RL1 + RL2) is converted to single-ended output terminating impedance Ro.
L11, C11, L12 and C12 are calculated as below. $\mathrm{f}_{\text {out }}$ is signal output frequency.

$$
\begin{aligned}
& C_{11}=C_{12}=\frac{1}{2 \pi * f_{\mathrm{OUT}} * \sqrt{\left(R_{\mathrm{L} 1}+R_{\mathrm{L} 2}\right) * R_{\mathrm{O}}}} \\
& L_{11}=L_{12}=\frac{\sqrt{\left(R_{\mathrm{L} 1}+R_{\mathrm{L} 2}\right) * R_{\mathrm{O}}}}{2 \pi * f_{\mathrm{OUT}}}
\end{aligned}
$$

For example, in the case of Signal Output $=50 \mathrm{MHz}$, Output Load Resistor $($ Rload $)=2.2 \mathrm{k} \Omega$ in $50 \Omega$ interface, L11, C11, L12 and C12 are calculated as below.

$$
\begin{aligned}
& C_{11}=C_{12}=\frac{1}{2 \pi^{*}\left(50^{*} 10^{\wedge} 6\right) * \sqrt{\left(2.2^{*} 10^{\wedge} 3\right) * 50}}=9.6 \mathrm{pF} \\
& L_{11}=L_{12}=\frac{\sqrt{\left(2.2 * 10^{\wedge} 3\right) * 50}}{2 \pi *\left(50^{*} 10^{\wedge} 6\right)}=1056 \mathrm{nH}
\end{aligned}
$$

L13 and C13 should be large enough not to affect the impedance at signal output frequency. In some cases the impedance matching can be optimized by L13 and C13.

For example, in the case of Signal Output $=50 \mathrm{MHz}$, Output Load Resistor $($ Rload $)=2.2 \mathrm{k} \Omega$ in $50 \Omega$ interface, it is recommended to choose 2200 nH and 1000 pF as L13 and C13. If any correction is needed, it can be adjusted by reducing the value of L13 and C13.

These calculated values are approximation. In some cases, some correction is needed due to the effect of parasitic capacitance of external parts or/and PCBs. The impedance matching network components should be decided through enough evaluation on AK1228.

Typical Performance using impedance matching network with LC is below. Signal Input $=600 \mathrm{MHz}$, Signal Output $=50 \mathrm{MHz}$, LO Input $=550 \mathrm{MHz}$, Output Load Resistor $($ Rload $)=2.2 \mathrm{k} \Omega, \mathrm{Vdd}=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{LO}$ Input Level $=0 \mathrm{dBm}$,

Table 12. Typical Component Values using impedance matching with LC

| Ref. | Value | Size | Part Number |
| :--- | :--- | :--- | :--- |
| RL1, RL2 | $1.1 \mathrm{k} \Omega$ | 1005 | KOA RK73K1ETP112 |
| L11, L12 | 1000 nH | 2012 | Murata LQW21HN1R0J00 |
| C11, C12 | 10 pF | 1005 | Murata GRM1552C1H100JA01 |
| L13 | 2200 nH | 2012 | Murata LQW21HN2R2J00 |
| C13 | 150 pF | 1005 | Murata GRM1552C1H151JA01 |

Table 13. Typical Performance using impedance matching with LC

| Parameter | Rbias | Min. Typ. Max. | Unit |
| :--- | :--- | :---: | :---: |
| Conversion Gain | Rbias $=39 \mathrm{k} \Omega(\cong 10.5 \mathrm{~mA})$ | 3.6 | dB |
|  | Rbias $=100 \mathrm{k} \Omega(\cong 4.5 \mathrm{~mA})$ | 1.3 |  |
| SSB Noise Figure | Rbias $=39 \mathrm{k} \Omega(\cong 10.5 \mathrm{~mA})$ | 8.6 | dB |
|  | Rbias $=100 \mathrm{k} \Omega(\cong 4.5 \mathrm{~mA})$ | 8.5 |  |
| IP1dB | Rbias $=39 \mathrm{k} \Omega(\cong 10.5 \mathrm{~mA})$ | 2.1 | dBm |
|  | Rbias $=100 \mathrm{k} \Omega(\cong 4.5 \mathrm{~mA})$ | 3.6 |  |
| IIP3 | Rbias $=39 \mathrm{k} \Omega(\cong 10.5 \mathrm{~mA})$ | 15.5 | dBm |
|  | Rbias $=100 \mathrm{k} \Omega(\cong 4.5 \mathrm{~mA})$ | 9.6 |  |

The phase and amplitude balance is achieved at IF Output frequency by using impedance matching network with LC. The port-to-port leakage is improved with the phase and amplitude balance is achieved at RF, LO, and IF frequency with wide band balun.

## -Output Load Resistor and Gain

Signal output ports are differential open drain outputs. Gain can be optimized by the resistance connected to the OUTP and OUTN Pins (Rload). Signal Input $=600 \pm 10 \mathrm{MHz}$, Signal Output $=50 \pm 10 \mathrm{MHz}$, LO Input $=$ $550 \mathrm{MHz}, \mathrm{Vdd}=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, LO Input Level $=0 \mathrm{dBm}$, Current Adjustment Resistor (Rbias) $=39 \mathrm{k} \Omega$. Test circuit is shown in Figure 3.


## -The Improvement of Analog circuit characteristics with a differential LO input

AK1228 is a high linearity and low noise mixer that can be driven by a single ended LO. However it is possible to further improve the analog characteristics with a differential LO input. Gain, NF, HalfIF is improved by reducing the second-order distortion in exchange for the chip components increases four points. Test circuit is shown in Figure 8.


Figure 8. Example of Impedance matching network with a differential LO input
C21and L22 compose lowpass filter. C22 and L21 are for highpass filter. C2, C3 is DC blocking capacitor. The impedance of LOINP/N is high impedance so R1 is differential input resistance.

The single-ended LO input voltage can be converted to differential voltage of LOINP/N by L21, C21, L22 and C22 properly. The output resistance Ro of the previous stage is converted to a differential input resistance R1.

L21, C21, L22 and C22 are calculated as below. $\mathrm{f}_{\mathrm{LO}}$ is LO input frequency.
$C_{21}=C_{22}=\frac{1}{2 \pi * f_{\mathrm{LO}} * \sqrt{R_{1} * R_{\mathrm{IN}}}}$
$L_{21}=L_{22}=\frac{\sqrt{R_{1} * R_{\mathrm{IN}}}}{2 \pi * f_{\mathrm{LO}}}$

For example, in the case of LO signal input $=1250 \mathrm{MHz}$, differential input resistance $\mathrm{R} 1=51 \Omega$ in $50 \Omega$ interface, L21, C21, L22 and C22 are calculated as below.
$C_{21}=C_{22}=\frac{1}{2 \pi *\left(1250 * 10^{\wedge} 6\right) * \sqrt{51 * 50}}=2.5 \mathrm{pF}$
$L_{21}=L_{22}=\frac{\sqrt{51 * 50}}{2 \pi *\left(1250 * 10^{\wedge} 6\right)}=6.4 \mathrm{nH}$
$\mathrm{C} 2, \mathrm{C} 3$ should be large enough not to affect the differential input impedance R 1 at LO input frequency.

These calculated values are approximation. In some cases, some correction is needed due to the effect of parasitic capacitance of external parts or/and PCBs. The impedance matching network components should be decided through enough evaluation on AK1228.

Typical Performance using impedance matching network with a differential LO input is below. Signal Input $=1300 \mathrm{MHz}$, Signal Output $=50 \mathrm{MHz}$, LO Input $=1250 \mathrm{MHz}$, Output Load Resistor $($ Rload $)=2.2 \mathrm{k} \Omega, \mathrm{Vdd}=$ $3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, LO Input Level $=0 \mathrm{dBm}$.

Table 14. Typical Component Values using impedance matching with a differential LO input

| Ref. | Value | Size | Part Number |
| :--- | :--- | :--- | :--- |
| R1 | $51 \Omega$ | 1005 | KOA RK73K1ETP510 |
| C2, C3 | 10 nF | 1005 | Murata GRM155B31H103KA88 |
| L21, L22 | 6.2 nH | 1005 | Murata LQW15AN6N2C00 |
| C21, C22 | 2.4 pF | 1005 | Murata GJM1553C1H2R4CB01 |

Gain/NF performance



HalfIF performance (Signal input Frequency $=\mathrm{LO}+\mathrm{IF} / 2=1275 \mathrm{MHz}$ )


LO Input and Resistance for current adjustment
$\longrightarrow \mathrm{LO}=$ Diff., Rbias $=39 \mathrm{k} \Omega(\cong 10.5 \mathrm{~mA})$

-     -         - LO $=$ Single, Rbias $=39 \mathrm{k} \Omega(\cong 10.5 \mathrm{~mA})$
$\cdots \cdots \cdots \cdot$ LO $=$ Diff., Rbias $=100 \mathrm{k} \Omega(\cong 4.5 \mathrm{~mA})$
— - $\mathrm{LO}=$ Single, Rbias $=100 \mathrm{k} \Omega(\cong 4.5 \mathrm{~mA})$


## -Evaluation Board



Figure 9. AK1224/AK1228 Evaluation Board (Balun)


Figure 10. AK1224/AK1228 Evaluation Board Schematic (Balun)


Figure 11. AK1224/AK1228 Evaluation Board (matching network with LC)


Figure 12. AK1224/AK1228 Evaluation Board Schematic (matching network with LC)


Figure 13. Outer Dimensions
Note 1.1 pin marking is only a reference for the 1 pin location on the top of package.

## 15. Marking

(a) Style
: UQFN
(b) Number of Pins

16
(c) 1 pin marking
(d) Product number O
(e) Date code : 1228
(e) Date code

YWWL (4 digits)
Y : Lower 1 digit of calendar year (Year $2013 \rightarrow 3,2014 \rightarrow 4 \ldots$ )
WW : Week
L: Lot identification, given to each product lot which is made in a week $\rightarrow$ LOT ID is given in alphabetical order (A, B, C, ...)


Figure 14. Marking

## IMPORTANT NOTICE

0. Asahi Kaseei Mịcrodevices Corporation ("AKM") reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document ("Product"), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products.
1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.
2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing.
3. Though AKM works continually to improve the Product's quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption.
4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.
6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM.
7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM.

## AsahiKASEI

-Related Parts

| Part\# | Discription | Comments |
| :---: | :---: | :---: |
| Mixer |  |  |
| AK1220 | 100MHz~900MHz High Linearity Down Conversion Mixer | IIP3:+22dBm |
| AK1222 | 100MHz 900 MHz Low Power Down Conversion Mixer | IDD: 2.9 mA |
| AK1224 | 100MHz~900MHz Low Noise, High Liniarity Down Conversion Mixer | NF:8.5dB, IIP3:+18dBm |
| AK1228 | $10 \mathrm{MHz} \sim 2 \mathrm{GHz}$ Up/Down Conversion Mixer | 3V Supply, NF:8.5dB |
| AK1221 | $0.7 \mathrm{GHz} \sim 3.5 \mathrm{GHz}$ High Linearity Down Conversion Mixer | IIP3:+25dBm |
| AK1223 | 3GHz $\sim 8.5 \mathrm{GHz}$ High Linearity Down Conversion Mixer | IIP3:+13dB, NF:15dB |
| PLL Synthesizer |  |  |
| AK1541 | 20MHz~600MHz Low Power Fractional-N Synthesizer | IDD:4.6mA |
| AK1542A | 20MHz $\sim 600 \mathrm{MHz}$ Low Power Integer-N Synthesizer | IDD: 2.2 mA |
| AK1543 | $400 \mathrm{MHz} \sim 1.3 \mathrm{GHz}$ Low Power Fractional-N Synthesizer | IDD: 5.1 mA |
| AK1544 | $400 \mathrm{MHz} \sim 1.3 \mathrm{GHz}$ Low Power Integer-N Synthesizer | IDD:2.8mA |
| AK1590 | $60 \mathrm{MHz} \sim 1 \mathrm{GHz}$ Fractional-N Synthesizer | IDD:2.5mA |
| AK1545 | $0.5 \mathrm{GHz} \sim 3.5 \mathrm{GHz}$ Integer-N Synthesizer | 16-TSSOP |
| AK1546 | $0.5 \mathrm{GHz} \sim 3 \mathrm{GHz}$ Low Phase Noise Integer-N Synthesizer | Normalized C/N:-226dBc/Hz |
| AK1547 | $0.5 \mathrm{GHz} \sim 4 \mathrm{GHz}$ Integer-N Synthesizer | 5V Supply |
| AK1548 | $1 \mathrm{GHz} \sim 8 \mathrm{GHz}$ Low Phase Noise Integer-N Synthesizer | Normalized C/N:-226dBc/Hz |
| IFVGA |  |  |
| AK1291 | 100~300MHz Analog Signal Control IF VGA w/ RSSI | Dynamic Range:30dB |
| integrated VCO |  |  |
| AK1572 | 690MHz 4GHz Down Conversion Mixer with Frac.-N PLL and VCO | IIP3:24dBm, -111dBc/Hz@ 100kHz |
| AK1575 | $690 \mathrm{MHz} \sim 4 \mathrm{GHz}$ Up Conversion Mixer with Frac.-N PLL and VCO | IIP3:24dBm, -111dBc/Hz@ 100kHz |
| IF Reciever (2nd Mixer + IF BPF + FM Detector) |  |  |
| AK2364 | Built-in programmable AGC+BPF, FM detector IC | IFBPF: : $\pm 10 \mathrm{kHz} \sim \pm 4.5 \mathrm{kHz}$ |
| AK2365A | Built-in programmable AGC+BPF, IFIC | IFBPF: : $\pm 7.5 \mathrm{kHz} \sim \pm 2 \mathrm{kHz}$ |
| Analog BB for PMR/LMR |  |  |
| AK2345C | CTCSS Filter, Encoder, Decoder | 24-VSOP |
| $\begin{aligned} & \hline \text { AK2360/ } \\ & \text { AK2360A } \end{aligned}$ | Inverted frequency ( $3.376 \mathrm{kHz} / 3.020 \mathrm{kHz}$ ) scrambler | 8-SON |
| AK2363 | MSK Modem/DTMF Receiver | 24-QFN |
| AK2346B | 0.3-2.55/3.0kHz Analog audio filter, | 24-VSOP |
| AK2346A | Emphasis, Compandor, scrambler, MSK Modem | 24-QFN |
| AK2347B | 0.3-2.55/3.0kHz Analog audio filter | 24-VSOP |
| AK2347A | Emphasis, Compandor, scrambler, CTCSS filter | 24-QFN |
| Function IC |  |  |
| AK2330 | 8-bit 8ch Electronic Volume | VREF can be selected for each channel |
| AK2331 | 8-bit 4ch Electronic Volume | VREF can be selected for each channel |

Asahi Kasei Microdevices Corporation ("AKM") reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document, please make inquiries the sales office of AKM or authorized distributors as to current status of the Products.


[^0]:    The specifications are applicable within the recommended operating range (supply voltage/operating temperature).

